

Recreating History

Making the Chip that went on the Moon in 1969

on

Santosh K Kurinec,

Mark Indovina, Karl McNulty, Matthew Seitz Department of Electrical & Microelectronic Engineering Rochester Institute of Technology

Apollo Guidance Computer Chip, S. Kurinec

RIT Team

Santosh Kurinec, Professor, Electrical & Microelectronic Engineering Mark Indovina, Professor, Electrical & Microelectronic Engineering

Karl McNulty,

Electrical & Microelectronic Engineering

Matthew Seitz,

Microsystems Engineering

External Team Contributors

Jimmie Wayne Loocke; Ex NASA Technician, Founder of Space Computer.Org

Petr Bruza, Assistant Professor of Engineering, Dartmoth Engineering, Thayer School, Hanover, NH

Eldon Hall, Original AGC Designer

Jimmie Wayne Loocke

Petr Bruza

Eldon Hall inspects an AGC display and keyboard (DSKY). Photo: Charles Stark Draper Laboratory Archives

Eldon Hall

Eldon Hall was leader of the hardware design effort throughout the development of the AGC, and pioneered the use of integrated circuits (ICs) in this design.

Author of the book "Journey to the Moon"

Recent photo shared by his daughter Pam Hall

Apollo Guidance Computer

Buzz Aldrin at LM-5 left window. Apollo Guidance Computer (AGC)'s Display and Keyboard (DSKY) is at lower right.

By Project Apollo Archive - AS11-36-5391, Public Domain, https://commons.wikimedia.org/w/index.php?curid=43988989

Lunar Module Descent Profile

Apollo Guidance Computer (AGC) Requirements

- Autonomously navigate from the Earth to the Moon
- Continuously integrate State Vector
 - a set of data describing exactly where an object is located in space, and how it is moving
- Compute navigation fixes using stars, sun and planets
- Attitude control via digital autopilot
- Lunar landing, ascent, rendezvous
- Manually take over Saturn V booster in emergency
- Remote updates from the ground
- Real-time information display
- Multiprogramming
- Event timing at centisecond (0.01 seconds) resolution
- Multiple user interfaces ("terminals")

Logic Chips

- Fairchild introduced the "Micrologic" chip
 - Two triple-input NOR gates per chip
 - Resistor-Transistor Logic
- Virtually all logic implemented using the Micrologic chips
 - Single component greatly simplifies design, testing
 - Greater production quantities -> better yields and higher quality
 - Several hundred thousand chips procured (!)

"Logic Stick"

- Micrologic chips installed on "Logic Stick"
 - Subassemblies (sticks) contain 120 chips (240 gates)
 - Chips welded to multilayer boards
 - Logic boards essentially identical
 - Traditional circuit boards could not produce the necessary logic density
 - Interconnections made through wire-wraps in the underside of the "logic tray"

Apollo Guidance Computer Hardware

- 36K (16-bit) words ROM (core rope)
- 2k (16-bit) words core RAM
- Instructions average 12-85 microseconds
- 1 cu.ft, 70 pounds, 55 watts
- 37 "Normal" instructions
- 10 "Involuntary" instructions (Counters)
- 8 I/O instructions
- One's complement,
 - "fractional" representation

- Upper tray: Core Rope and Erasable memory
- Lower tray: Logic and interface modules

Single Logic Chip

Fairchild Semiconductor 9915 Medium Power Dual Three Input Gate

Dual NOR3 (NASA Schematic)

Apollo Guidance Computer NOR Gate

Dual NOR3 gate using Bipolar Junction Transistors

Apollo Guidance Computer Chip, S. Kurinec

3 Input RTL NOR Gate

Test Simulation

Bipolar Junction Transistor Cross Section Schematic

Apollo Guidance Computer Chip, S. Kurinec

AGC Chip Transistor Testing at RIT

Recreating the AGC Chip

1. Explore the chip layout 2. Identify number of masking steps 3. Develop the process 4. Carry out simulations 5. Make masks 6. Run the process at RIT **Microelectrnic Engineering** cleanroom

Device Cross Section

Device Cross Section

Fabrication Process Flow Designed: 6 Mask Levels

Apollo Guidance Computer Chip, S. Kurinec

AGC Process Flow Developed

Apollo Guidance Computer Chip, S. Kurinec

Masks Designed at RIT

Device Simulated

Apollo Guidance Computer Chip, S. Kurinec

Conclusions

- We have led the creation of a team to rebuild Apollo Guidance Computer Chip in a student run fab
- The chip is tested, simulated and is being made
- Interest from a number of iconic people & institutions has been expressed to get an RIT made AGC Chip

Acknowledgments

Theodore W. Lechman EE at Sequential Machines, LLC. Harris RF Communications Rochester, New York, United States

Ivan Puchades, Assistant Professor Electrical & Microelectronic Engineering Rochester Institute of Technology

Unoma Phebe Okoye, Graduate Electrical & Microelectronic Engineering Rochester Institute of Technology Udita Kapoor Field Application Engineer Silvaco Inc.

Garrett Schlenvogt, Ph.D. US Applications Engineering Manager Silvaco, Inc.