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METHOD AND APPARATUS FOR TRAINING FIG . 5 is an embodiment of a training system in accor 
MEMRISTIVE LEARNING SYSTEMS dance with the present disclosure ; 

FIG . 6 is an example circuit design for generating uniform 
CROSS REFERENCE random numbers within the training system ; and 

FIG . 7 is an alternative embodiment of a training system 
This application claims the benefit of the filing date of in accordance with the present disclosure . 

U.S. Provisional Patent Application Ser . No. 62 / 164,776 , SUMMARY filed May 21 , 2015 , which is hereby incorporated by refer 
ence in its entirety . In accordance with an aspect of the present disclosure , 

FIELD there is provided a method for training a memristive learning 
system including identifying a task that the memristive 

The present disclosure relates to a method and apparatus learning system is to be trained to perform ; identifying a cost 
for training memristive learning systems with stochastic function ; choosing a deterministic update equation ; deriving 
learning algorithms . 15 a stochastic update equation from the deterministic update 

equation ; designing a training system hardware to imple 
BACKGROUND ment the derived stochastic update equation ; coupling the 

memristive learning system to the training system ; and 
Recently , significant advances were made in the machine training the memristive learning system . 

learning algorithms that impact several application domains . 20 In accordance with an aspect of the present disclosure , 
It is imperative to map these learning algorithms to physical there is provided a training system apparatus designed to 
hardware , in order to achieve orders of magnitude improve implement stochastic learning algorithms . 
ment in performance , energy efficiency and form factor . 

DETAILED DESCRIPTION Mapping to the hardware requires redesigning and optimi 
zations to the algorithms at different abstractions . 

Memristive learning systems ( MLS ) are designed using The present disclosure encompasses a method and appa 
hybrid CMOS / memristor technologies , sometimes referred ratus for training memristive learning systems ( MLSs ) , 
to in the literature as neuromemristive systems or neuro sometimes referred to in the literature as neuromemristive 
morphic systems . An MLS is an adaptable electronic system systems or neuromorphic systems . An MLS is an adaptive 
composed of at least one memristor . Memristors ' behavioral 30 electronic system composed of at least one memristor , which 
similarity to biological synapses enables them to be incor- is an electronic circuit device with a top electrode layer , a 
porated into MLS as hardware synapse circuits . These bottom electrode layer , and a switching layer that follows a 
systems are attractive for the design of power and area state - dependent Ohm's law ( see FIG . 1 ) : 
constrained hardware neural network architectures . These im ( t ) = Gm ( Y ) m ( t ) , ( 1 ) 
architectures offer real - time parallel computation and high 35 
learning capacity for applications such as pattern classifica where im ( t ) is the current flowing through the memristor , 
tion , image and video processing , autonomous surveillance , Gm ( y ) is the memristor's conductance , y is a state variable , 
and medical diagnostics , among others . Vm ( t ) is the voltage applied across the memristor , and t is 
One of the most difficult challenges to overcome when time . Upon application of a voltage , a memristor will 

designing an MLS is identifying a training algorithm which 40 " switch ” according to 
effectively minimizes a cost function and also has a low 
hardware overhead . Software implementations of artificial ( 2 ) neural networks have many sophisticated algorithms avail = x ( y , Vm ( t ) , 1 ) 
able , such as backpropagation , resilient backpropagation , 
Levenberg - Marqaurdt , genetic algorithms , etc. At the core 45 
of many of these algorithms is the computation of error where x is a switching function governing the switching 
gradients and other complex operations in the space of the dynamics . The precise form of x and the physical meaning 
system's parameters . Current implementations of such ofy are dependent on the specific materials used for the three 
operations in an MLS are deterministic and expensive due to memristor layers . A number of different materials and mate 
the design complexity , area overhead , and power require- 50 rial combinations have been explored for this purpose 
ments of associated analog and digital circuitry . Kuzum , D , Yu , S. and Wong , H - S . P. ( 2013 ) . “ Synaptic 

The art lacks a method and apparatus for training MLSs Electronics : Materials , Devices and Applications . ” Nano 
which leverages stochastic approximations to deterministic technology 24 ( 38 ) , which is hereby incorporated by refer 
training algorithms in order to reduce the design complexity , ence in its entirety . The top and bottom electrodes are 
area , and power overhead of these systems . 55 typically implemented with metals , such as copper , alumi 

num , silver , and gold . Implementation of the switching layer 
BRIEF DESCRIPTION OF THE DRAWINGS has been demonstrated with transition metal oxides such as 

titanium dioxide and tantalum oxide , and other metal oxides , 
FIG . 1 shows a cross - section diagram of a memristor ; as well as chalcogenide materials like germanium selenide . 
FIG . 2 shows a memristive learning system coupled with 60 For a specific material choice , y may be related to tunneling 

a training system ; barrier width , cross sectional area of metallic filaments , 
FIG . 3 is a flowchart in accordance with an embodiment doping front location , etc. In addition , the switching func 

of the present disclosure that shows the order of operations tion y may be linear , exponential , probabilistic , etc. , depend 
when designing a stochastic parameter update equation for ing on the material choice . Critically , however , every x must 
an MLS ; 65 follow xly , Vm = 0 , t ) = 0 , meaning that the device is non 
FIG . 4 is an example in accordance with an embodiment volatile ( i.e. , it will retain its state if no voltage is applied ) . 

of the present disclosure of an MLS architecture ; It is this non - volatility , in conjunction with memristors ' 

dy 
dt 
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small footprint / high density , low power consumption , and 
ability to closely couple memory and processing that makes aj dx1 ( 5 ) 

axx ... x , memristors an attractive technology choice for hardware ?????2 ?? ; ; 
learning systems . 

Let G , be the set of all memristor conductance values in 5 where a is called the learning rate and x , * is shorthand for the MLS . Then , the MLS's overall functionality is defined each of the partial derivatives . The value of a is chosen by a hypothesis function has heuristically through trial and error . Generally , large a 
values may prevent the training process from converging , 

v = h ( u , x , t ; 0 ( Gm ) ) , ( 3 ) while very small values of a will cause training to be very 
where ? is a vector of system outputs , u is a vector of system time consuming . Note that other approaches to minimization 
inputs , x is a state vector that represents the current state of of the cost function are also applicable , including but not 
the system , t is time , and e ( Gm ) is a parameter vector , each limited to simulated annealing , genetic algorithms , Moore 
component of which depends on zero or more members of Penrose inverse methods , and the like . Equation ( 5 ) is 
Gm ( see FIG . 2 ) . Any quantitative value associated with the is referred to as the deterministic update equation , and during 
MLS can be considered part of its state , including inputs , the learning process , the update equation may be applied one 

or more times until the cost function reaches an acceptable outputs , time , parameter values , or expressions thereof . In value for the identified task ( s ) . The deterministic equation addition , the specific form of the hypothesis function h may be supervised or unsupervised . A supervised equation depends on the MLS architecture , which may take the form includes a target final or intermediate result y that the MLS of any adaptive / learning system , including support vector should try to achieve . For example , if the MLS task is image machines , decision trees , Bayesian networks , artificial neu classification , then Equation ( 5 ) will often include the class 
ral networks ( ANNs ) , and the like . label of the current input image . If the MLS task is regres 
An embodiment of a method for training an MLS is sion , then Equation ( 5 ) will include the values of dependent 

illustrated in FIG . 3. The method includes identifying a task variables associated with each observed data point . 
or set of tasks that the MLS will be trained to perform . Examples of supervised equations include least - mean 
Possible tasks include but are not limited to image classifi- squares and backpropagation , among others . An unsuper 
cation , time series prediction , function approximation , coin- vised equation does not include target values . Examples of 
cidence detection , clustering , and the like . It is important to unsupervised equations include spike time dependent plas 
note that a particular MLS architecture may be better suited ticity , k - means clustering , and the like . One or more super 
for a given set of tasks than others . For example , a single- vised equations can be combined with one or more unsu 
layer perceptron architecture , which is a type of ANN works pervised equations in a semi supervised learning process . 
well for classification of linearly - separable data . However , a Each of the partial derivatives in Equation ( 5 ) is usually 
support vector machine , or multi - layer perceptron architec- represented as an analog voltage or current in an MLS . As 
ture works much better for classification when data are not a result , prior computing of the result required expensive ( in 
linearly separable . Therefore , an appropriate target task ( s ) terms of design complexity , area , and power consumption ) 
will be constrained by the MLS architecture . The task ( s ) arithmetic circuitry such as Gilbert and other transconduc 
most suited for a given architecture can be determined from tance multipliers , which have previously been used in the 
experimental and theoretical results in the literature by one implementation of such algorithms . 
of skill in the art . The present method includes transforming the determin 

The present method includes identifying a cost function istic equation to a stochastic equation by changing each 
J ( O ) , which quantifies the MLS's performance on the iden- continuous analog value to a digital value X ; drawn from a 
tified task ( s ) . Various cost functions are defined in the probability distribution D : 
literature for different tasks . For classification tasks , cross 
entropy cost functions are usually used , which quantify the 40 ; = - aX1X2 ... X ( 6 ) 
error between the MLS's class prediction and the real class Since all of the values , except for a are now digital , of an input ( e.g. , an image ) . Other tasks , such as regression , Equation ( 7 ) can be computed using mostly digital logic may use a mean square error cost function to quantify how 
well the MLS's hypothesis function fits a set of data . Other gates , significantly reducing the design complexity and 

overhead of state - of - the - art methods . This allows the param cost functions may take additional information into account , such as the complexity of the hypothesis function , by 50 eter update result to be computed using simpler logic 
circuits . Conversion of the variables in the deterministic including regularization terms that limit the size of param equation to the stochastic equation depends on the probabil eter values . ity distribution D. While it is possible to use any valid The present method includes identifying one or more probability distribution ( e.g. Normal , Beta , and the like ) , deterministic update equations that set ( either iteratively or 55 Bernoulli distributions work well because they are easy to in one step ) ( Gm ) to a value that approximately minimizes , 

in either a global or local minimum sense , the chosen cost implement in hardware , their probability mass functions are 
one - to - one , and their domain is 1 bit . For a Bernoulli function . A particularly well - suited approach in the context distribution , each value of X , is chosen as X : ~ Ber ( x , * ' ) , of the current invention is gradient descent , where each where X ; * ' is a version of x ; * scaled between 0 and 1. As will parameter value is adjusted in the opposite direction of the 60 be demonstrated in the example , this conversion can be cost gradient : accomplished in hardware using simple comparator circuits 
that compare x , ** and ri , which is an independent , uniform 
random number between 0 and 1. The hardware for random ( 4 ) 

40 ; = -a ae ; number generation may be designed following alternative 
65 methods , some of which are listed below . 

The present method includes designing a training system 
which can be written as to implement , either exactly or approximately , the stochastic 

35 

40 

45 

aj 
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equation . The specific hardware design depends on the exact MLSs trained using the proposed method are applicable to 
form of the stochastic equation . A number of circuits exist a wide range of problem domains including but not limited 
for generating the random numbers r ; required to convert the to pattern classification ( e.g. , in images , videos and sounds ) , 
deterministic variables in the deterministic update equation anomaly detection ( e.g. , identification of suspicious activi 
to the stochastic variables in the stochastic update equation . 5 ties , anomalies in internet traffic , and the like . ) , data com 
In one embodiment of the disclosure , linear feedback shift pression ( e.g. , using autoencoders ) , clustering problems in 
registers may be used to generate a sequence of pseudoran- domains including big data , cloud computing , data mining , 
dom binary numbers that can be converted to analog volt health care , bioinformatics , visual processing , natural lan 
ages or currents , as needed . Cellular automata methods , guage processing , and datacenters , and the like . 
thermal noise , metastability , and the like may also be used The present disclosure is an improvement over existing 
to generate random numbers . The required arithmetic and deterministic training algorithms used in hardware / embed 
other operations in the stochastic update equation may be ded platforms . Stochastic update equations afford the ability 
implemented with simple logic gates , since all of the sto to replace complex ( in terms of design , area , and power 

chastic variables are digital , and , in the case where a 15 digital logic circuits , leading to reduced training costs . consumption costs ) training circuits with relatively simple 
Bernoulli distribution is used , each stochastic variable is just Merkel , C. , & Kudithipudi , D. ( 2014 ) . A current - mode one bit . The general approach is to ensure that every partial CMOS / memristor hybrid implementation of an extreme computation in the deterministic update equation , when learning machine . In ACM Great Lakes Symposium on VLSI using the scaled variables x ; * t , is well - approximated by the Design ( pp . 241-242 ) ; Merkel , C. , & Kudithipudi , D. 
expected output of a circuit with the associated stochastic 20 ( 2014 ) . Neuromemristive Extreme Learning Machines for 
inputs . For example , it can be shown that the expected Pattern Classification . In International Symposium on VLSI 
output of an AND gate with inputs X , and X2 is x * ' x2 ** . ( pp . 77-82 ) ; and Merkel , C. , & Kudithipudi , D. ( 2014 ) . A 
Therefore , an AND gate is used for multiplication opera- Stochastic Learning Algorithm for Neuromemristive Sys 
tions . It can also be shown that XOR gates approximate tems . In System on Chip Conference ( pp . 359-364 ) are 
absolute differences , multiplexers perform scaled addition 25 hereby incorporated by reference in their entirety . 
and , in general , the stochastic function of any circuit can be The disclosure will be further illustrated with reference to 
determined by deriving its expected output when its inputs the following specific examples disclosed therein . It is 
are stochastic . Other hardware components may also be used understood that these examples are given by way of illus 
for computing , e.g. , the sign of a value , which can be tration and are not meant to limit the disclosure or the claims 
determined using a comparator circuit . It is understood this 30 to follow . 

example is one of several possible realizations of the sto EXAMPLE 1 chastic training system hardware in accordance with the 
present disclosure . As a concrete example , consider the task of classifying 

The present method includes training the MLS by apply- 35 handwritten images from the MNIST dataset , LeCun , Y. ing write voltages to one or more of the memristors that ( 2016 ) http://yann.lecun.com/exdb/mnist/ , which is hereby 
constitute the system's parameter vector 0 ( Gm ) . The inter incorporated by reference in its entirety . A feasible MLS for action between the MLS and the training system hardware is this task is shown in FIG . 4. The architecture is a type of illustrated in FIG . 2. The required state variables , including ANN called an extreme learning machine ( ELM ) . ELMs inputs , outputs , targets , etc. are read by the training system 40 have a three layer structure , similar to a typical multilayer 
and used to calculate 40 ; for all i using the hardware perceptron . The ELM has N inputs and M outputs , the values implementation of Equation ( 6 ) . Then , 40 , is converted to a of which are task - dependent . For the chosen task , N = 25 , write voltage using Equation ( 2 ) , and the write voltage is corresponding to images of 5x5 pixels , and M = 10 , corre 
applied to the memristors whose conductances define 0 ;. In sponding to digit class of 0,1 , , 9 . Additional constant bias general , Gm may be a non - linear function of y and 45 inputs b , with values equal to 1 are also present . The ELM 

hardware is implemented using a combination of standard 
complementary metal oxide semiconductor ( CMOS ) cir 
cuitry and memristors . Neurons , represented by circles , in dt each layer compute the sum of their weighted inputs . Each 

50 neuron's output is then a function of that sum , referred to as 
a non - linear function in the applied flux o = fvudt . However , an activation function . The activation function for the neu 
the training process is made simpler by assuming that these rons in the first layer is an identity function , represented by 
functions are approximately linear , allowing the memristor's a diagonal line in the center of the neuron . In the second 
conductance to be tuned by application of a constant write layer , all but one of the neurons has a logistic sigmoid 
voltage for short period of time . To increase the conduc- 55 activation function , represented by the curved line in the 
tance , a positive voltage is applied . To decrease the conduc- center of the neuron . The number of neurons in the second 
tance , a negative voltage is applied . The write voltage must layer , referred to as N , is usually much larger than N , and is 
be above or below the positive or negative threshold voltage task - dependent . All of the neurons in the third layer also use 
for increasing or decreasing the conductance , respectively . a logistic sigmoid activation function . The connections 
The threshold voltages are functions of material properties . 60 between neurons are unidirectional ( from left to right ) and 
The magnitude of the write voltages and the time that the weighted , meaning that a value called a weight is multiplied 
write voltages are applied defines the learning rate a . by the output of one neuron before propagating to the next 
Typical values for write voltages are on the order of 1 V , neuron . In this particular example , the weighted connec 
while typical values for write times vary widely for different tions , or weights , between the first and second layers of 
devices , from sub - nanosecond to milliseconds . Values of a 65 neurons are implemented using CMOS circuits and are 
typically range between 0.001 and 1 , and are determined fixed , random values , uniformly distributed between -1 and 
through trial and error by one of ordinary skill in the art . 1. The weights between the second and third layers are 

dy 
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implemented using memristor circuits , shown in FIG . 4. In One proposed hardware implementation of ( 11 ) is shown 
this circuit , the input from the jih neuron in layer 2 is in FIG . 5. Here , the probability distribution D is a Bernoulli 
represented as a current x , ( 2 ) . The output current of the distribution . In this case , information in the MLS is repre 
weight between the jih neuron in layer 2 and the ith neuron sented by current values , which are converted to Bernoulli 
in layer three is si? ) . The weight value is expressed as 5 distributed stochastic variables using comparators and uni 

form random current values i ,, generated by a linear 
feedback shift register , as shown in FIG . 6. The final circuit 

( 7 ) output is a write voltage Vw , which is applied to terminal 1 
Gml ; , ; + Gm2 ; , j of the weight circuit , while terminal 2 is grounded , as 

10 discussed previously . Note that vw is either Vw + , when the 
weight value is being increased and Vw_ when the weight 

which will approximately range between -1 and 1 when the value is being decreased . Multiplications in Equation ( 11 ) 
ratio of the maximum memristor conductance Gmon to the are performed using an AND gate , while the absolute 
minimum memristor conductance Gmoff is much greater than difference value is approximated using an XOR gate . In 
unity 15 addition , an enable signal en is used to control the amount 

of time that the write voltage is applied , thereby controlling 
the learning rate a . When 1000 training inputs are used and 

Gmon 1 ) 1000 testing inputs are used , the ELM paired with the 
present training method achieves identical classification 

20 accuracy ( percentage of correctly - classified test patterns ) as 
Depending on the memristor materials used , this ratio can be the deterministic training method and has 3.5x reduction in 
on the order of 103 or larger . The overall functionality of the area when compared to the deterministic training system . 
ELM is described by its hypothesis function as As an alternative example , consider FIG . 7 , which illus 

trates a stochastic training system for the same handwritten 
= h ( u , x , t ; 0 ( Gm ) = fsig ( 03 ) Psig ( 0 ( 2 [ u \ b ] ) | b ] ) , ( 8 ) 25 digit classification task using a different deterministic update 

equation ( and resulting in a different stochastic update where frig is the logistic sigmoid activation function and I equation ) . The deterministic equation is a batch version of denotes augmentation . Here , O ( 2 ) and ( 3 ) are N?xN + 1 and Equation ( 10 ) , meaning that parameters are only updated MxNx + 1 matrices containing 0 values corresponding to the after every training input has been observed . The addition of second and third layer weights , respectively . As described below , the ELM is trained to perform a particular task via 30 a counter in FIG . 7 enables the training system to keep track of the results from each training input . After each input has modification of its parameter vector ( Gm ) . This corre been applied , if the count is above a particular threshold sponds to modification of the memristor conductances asso th count then the memristors will be updated . Another differ ciated with each weight between the second and third neuron 
layers . This is accomplished by applying a write voltage V » 35 implementation are voltages , rather than currents , demon ence that can be observed is that the inputs to the batch 
to terminal ‘ l’of the weight circuit , while grounding ter 
minal “ 2 ” . This process is discussed in more detail below . strating the universality of the present method . The stochas 

tic batch training system is able to achieve identical results The cost function for the handwritten digit classification as the deterministic batch training system with significant task is the mean square error ( MSE ) , defined as reduction in hardware . 
Although various embodiments have been depicted and 

described in detail herein , it will be apparent to those skilled ( 9 ) 
J ( O ( Gm ) ) = MSE = in the relevant art that various modifications , additions , 

substitutions , and the like can be made without departing 
from the spirit of the disclosure and these are therefore 

45 considered to be within the scope of the disclosure as defined where m is the number of training inputs . The number ? is in the claims which follow . 
an index specifying the current training input . In the case of What is claimed : 
handwritten digit classification , each training input is an 1. A method for training a memristive learning system image of a handwritten digit that is used as an example to comprising : 
tune the MLS's parameters . identifying a task that the memristive learning system is 
One of the deterministic update equations for the cost to be trained to perform ; 

function in Equation ( 9 ) is the online least - mean - squares identifying a cost function ; ( LMS ) algorithm : choosing a deterministic update equation ; 
?? , ? . 2,3 ) = cLxP ( P ) -PP ) , deriving a stochastic update equation from the determin ( 10 ) istic update equation by converting the deterministic 

where the index i refers to the output neurons ( layer 3 in update equation into a stochastic bit stream ; 
FIG . 4 ) and index j specifies the hidden layer neurons ( layer designing a training system hardware comprising reduced 
2 in FIG . 4 ) . Equation ( 10 ) is referred to as ' online ' because hardware training circuitry , cost and power consump 
parameter updates take place after each input is applied to tion required to perform the task to implement the 
the MLS . derived stochastic update equation by applying sto 
Now , Equation ( 10 ) is transformed into a stochastic chastic write voltages to the memristors where the 

update equation using the method discussed above , where stochastic write voltages are generated from the sto 
the distribution D is a Bernoulli distribution : chastic bit stream ; 

coupling the memristive learning system to the training AP3 ) = asgn ( - , PxPLYP ) – P21 , ( 11 ) system ; and 
where sgn ( . ) is -1 when the argument is negative , when the training the memristive learning system to provide a 
argument is 0 , and +1 otherwise . trained memristive learning system while minimizing 

40 

2m ( 1 " ) – ) ?, 
p = 1 i 

50 

55 

60 

65 
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the hardware training circuitry , cost and power con 
sumption required to train the memristive learning 
system . 

2. The method of claim 1 , wherein the task comprises 
image classification , time series prediction , function 5 
approximation , coincidence detection , or clustering . 

3. The method of claim 1 , wherein the deterministic 
equation is supervised , unsupervised , or semi supervised . 

4. The method of claim 1 , wherein the cost function 
comprises cross entropy or mean square error cost function . 10 

5. The method of claim 1 , wherein deriving a stochastic 
update equation from the deterministic update equation 
comprises changing each continuous analog value to a 
digital value drawn from a probability distribution . 

6. The method of claim 1 , wherein training the memristive 15 
learning system comprises applying voltages to at least one 
memristor of the memristive learning system and the adjust 
ing the conductances of the at least one memristor based on 
the training system implementation of the stochastic equa 
tion in at least one of a supervised , unsupervised , and semi 20 
supervised fashion in order to change the learning system's 
functionality . 

* 


