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1
METHODS FOR ADAPTIVE AND
PROGRESSIVE GRADIENT-BASED
MULTI-RESOLUTION COLOR IMAGE
SEGMENTATION AND SYSTEMS THEREOF

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/204,787, filed Jan. 9, 2009,
which is hereby incorporated by reference in its entirety.

FIELD

The present invention generally relates to methods and
systems for image segmentation and, more particularly, to
methods for adaptive and progressive gradient-based multi-
resolution color image segmentation and systems thereof.

BACKGROUND

The interest in digital media has grown to new heights with
rapid technological advancements being made in the capture
and sharing of images, consequently necessitating the explo-
ration of methods to enhance, classify and/or extract infor-
mation from them. Image segmentation is one approach that
provides the foundation to make these functionalities ever
more effective and expeditious. Segmentation is defined as
the meaningful partitioning of an image into distinct clusters
that exhibit homogeneous characteristics. In doing so, it gen-
erates a reduced and relevant dataset for high level semantic
operations such as rendering, indexing, classification, com-
pression, content-based retrieval, and multimedia applica-
tions, to name a few. Though segmentation comes naturally to
human observers, the development of a simulated environ-
ment to perform this imaging task has proven to be extremely
challenging.

Many grayscale/color domain methodologies have been
adopted in the past to tackle this ill-defined problem (see
Lucchese et al., “Color Image Segmentation: A State of the
Art Survey,” Proc. Indian National Science Acad. 67(2):207-
221 (2001); Cheng et al., “Color Image Segmentation:
Advances & Prospects,” Pat. Rec. 34(12):2259-2281 (2001),
which are hereby incorporated by reference in their entirety,
for comprehensive surveys). Initial multiscale research was
aimed to overcome drawbacks being faced by Bayesian
approaches for segmentation/classification, using Markov
Random Fields (MRF’s) and Gibbs Random Field’s (GRF’s)
estimation techniques. Derin et al., “Modeling and Segmen-
tation of Noisy and Textured Images Using Gibbs Random
Fields,” IEEE Trans. on Pat. Anal. and Mach. Int 9(1):39-55
(1987), which is hereby incorporated by reference in its
entirety, proposed a method of segmenting images by com-
paring the Gibbs distribution results to a predefined set of
textures using a Maximum a posteriori (MAP) criterion. Pap-
pas et al. “An Adaptive Clustering Method For Image Seg-
mentation,” /[EEE Trans. on Sig. Process. 40(4):901-914
(1992), which is hereby incorporated by reference in its
entirety, generalized the k-means clustering method using
adaptive and spatial constraints, and the Gibbs Random Field
(GRF) model to achieve segmentation in the gray scale
domain. Chang et al. “Adaptive Bayesian Segmentation of
Color Images,” Jour. of Elec. Imag. 3(4):404-414 (1994),
which is hereby incorporated by reference in its entirety,
extended this to color images by assuming conditional inde-
pendence of each color channel. Improved segmentation and
edge linking was achieved by Saber et al. “Fusion of Color
and Edge Information For Improved Segmentation and Edge
Linking,” Imag. and Vision Comp. 15:769-780 (1997), which
is hereby incorporated by reference in its entirety, who com-
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2

bined spatial edge information and the regions resulting from
a GRF model of the segmentation field. Bouman et al. “Mul-
tiple Resolution Segmentation of Textured Images,” IEEE
Trans. on Pat. Anal. and Mach. Int 7(1):39-55 (1991), which
is hereby incorporated by reference in its entirety, proposed
an method for segmenting textured images comprising
regions with varied statistical profiles using a causal Gaussian
autoregressive model and a MRF representing the classifica-
tion of each pixel at various scales. However most of the
aforementioned methods suffered from the fact that the
obtained estimates could not be calculated exactly and were
computationally prohibitive. To overcome these problems,
Bouman et al. “A Multiscale Random Field Model For Baye-
sian Image Segmentation” IEEFE Transactions on Image Pro-
cessing 3(2):1454-1466 (1994), which is hereby incorporated
by reference in its entirety, extended his work by incorporat-
ing a multiscale random field model (MSRF) and a sequential
MAP (SMAP) estimator. The MSRF model was used to cap-
ture the characteristics of image behavior at various scales.
However, the work in Bouman et al., “Multiple Resolution
Segmentation of Textured Images,” IEEE Trans. on Pat. Anal.
and Mach. Int 7(1):39-55 (1991); and Bouman et al., “A
Multiscale Random Field Model For Bayesian Image Seg-
mentation” [EEE Transactions on Image Processing 3(2):
1454-1466 (1994), which are hereby incorporated by refer-
ence in their entirety, had either used single scale versions of
the input image, or multiscale versions of the image with the
underlying hypothesis that the random variables at a given
level of the image data pyramid were independent from the
ones at other levels.

Comer et al. “Multiresolution Image Segmentation,” IEEE
International Conference on Acoustics Speech and Signal
Processing (1995), which is hereby incorporated by reference
in its entirety, used a multiresolution Gaussian autoregressive
model (MGAR) for a pyramid representation of the input
image and “maximization of posterior marginals” (MPM) for
pixel label estimates. He established correlations for these
estimates at different levels using the interim segmentations
corresponding to each level. He extended his work in Comer
et al., “Segmentation of Textured Images Using a Multireso-
Iution Gaussian Autoregressive Model,” IEEE Transactions
onImage Processing 8(3):1454-1466 (1999), which is hereby
incorporated by reference in its entirety, by using a multireso-
lution MPM model for class estimates and a multiscale MRF
to establish interlevel correlations into the class pyramid
model. Liu et al. “Multiresolution Color Image Segmenta-
tion,” IEEE Transactions on Image Processing 16(7):1454-
1466 (1994), which is hereby incorporated by reference in its
entirety, proposed a relaxation process that converged to a
MAP estimate of the eventual segmentation of the input
image using MRF’s ina quadtree structure. An MRF modelin
combination with the discrete wavelet transform was pro-
posed by Tab et al. “Scalable Multiresolution Color Image
Segmentation,” Signal Processing 86:1670-1687 (2006),
which is hereby incorporated by reference in its entirety, for
effective segmentations with spatial scalability, producing
similar patterns at different resolutions. Cheng et al. in Inter-
national Conference on Image Processing (1998), which is
hereby incorporated by reference in its entirety, incorporated
Hidden Markov Models (HMM’s) for developing complex
contextual structure, capturing textural information, and cor-
relating among image features at different scales unlike pre-
viously mentioned MRF models. The method’s usefulness
was illustrated on the problem of document segmentation
where intra scale contextual dependencies can be imperative.
A similar principle was applied by Won et al. (Won et al.,
“Hidden Markov Multiresolution Texture Segmentation
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Using Complex Wavelets,” in International Conference on
Telecommunications, which is hereby incorporated by refer-
ence in its entirety), who combined HMM and Hidden
Markov Tree (HMT) forming a hybrid HMM-HMT model to
establish local and global correlations for efficient block-
based segmentations.

Watershed and wavelet-driven segmentation methods has
been of interest for many researchers. Vanhamel et al. “Mul-
tiscale Gradient Watersheds of Color Images,” IEEE Trans-
actions on Image Processing 12(6):1454-1466 (2003), which
is hereby incorporated by reference in its entirety, proposed a
scheme constituting a non-linear anisotropic scale space and
vector value gradient watersheds in a hierarchical frame work
for multiresolution analysis. In a similar framework Makro-
giannis et al. “Watershed-Based Multiscale Segmentation
Method For Color Images Using Automated Scale Selection,”
J. Electronic Imaging 14(3) (2005), which is hereby incorpo-
rated by reference in its entirety, proposed watershed based
segmentations utilizing a fuzzy dissimilarity measure and
connectivity graphs for region merging. Jung et al. “Combin-
ing Wavelets and Watersheds For Robust Multiscale Image
Segmentation,” Image And Vision Computing 25:24-33
(2007), which is hereby incorporated by reference in its
entirety, combined orthogonal wavelet decomposition with
the watershed transform for multiscale image segmentation.

Edge, contour and region structure are other features that
have been adopted in various approaches for effective seg-
mentations. Tabb et al. “Multiscale Image Segmentation by
Integrated Edge and Region Detection,” IEEE Transactions
on Image Processing 6(5) (1997), which is hereby incorpo-
rated by reference in its entirety, instituted a multiscale
approach where the concept of scale represented image struc-
tures at different resolutions rather than the image itself. The
work involved performing a Gestalt analysis facilitating
detection of edges and regions without any smoothing
required at lower scales. On the other hand, Gui et al. “Mul-
tiscale Image Segmentation Using Active Contours,” which is
hereby incorporated by reference in its entirety, obtained
multiscale representations of the image using weighted TV
flow and used active contours for segmentation. The contours
at one level were given as input to the next higher level to
refine the segmentation outcome at that level. Munoz et al.
“Unsupervised active Regions For Multiresolution Image
Segmentation,” IEEE International Conference On Pattern
Recognition (2002), which is hereby incorporated by refer-
ence in its entirety, applied fusion of region and boundary
information, where the later was used for initializing a set of
active regions which in turn would compete for pixels in the
image in manner that would eventually minimize a region-
boundary based energy function. Sumengen et al. “Multi-
Scale Edge Detection and Image Segmentation,” (2005),
which is hereby incorporated by reference in its entirety,
showed through his work that multiscale approaches are very
effective for edge detection and segmentation of natural
images. Mean shift clustering followed by a minimum
description length (MDL) criterion was used by Luo et al.
“Unsupervised Multiscale Color Image Segmentation Based
on MDL Principle,” IEEE Transactions on Image Processing
15(9):1454-1466 (2006), which is hereby incorporated by
reference in its entirety, for the same purpose.

Fusion of color and texture information is an eminent
methodology in multiresolution image understanding/analy-
sis research. Deng et al. “Unsupervised Segmentation of
Color-Texture Regions in Images and Video,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 23(8):
800-810 (2001), which is hereby incorporated by reference in
its entirety, proposed a method prominently known as ISEG
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4

that performed color quantization and spatial segmentation in
combination of a multiscale growth procedure for segmenting
color-texture regions in images and video. Pappas etal. (Chen
and Pappas, “Perceptually Tuned Multi-Scale Color Texture
Segmentation,” in /EEE International Conference on Image
Processing (2004), which is hereby incorporated by reference
in its entirety,) utilized spatially adaptive features pertaining
to color and texture in a multiresolution structure to develop
perceptually tuned segmentations, validated using photo-
graphic targets. Dominant color and homogenous texture fea-
tures (HTF) integrated with an adaptive region merging tech-
nique were employed by Wan et al. “Multi-Scale Color
Texture Image Segmentation With Adaptive Region Merg-
ing,” IEEE International Conféerence on Acoustics Speech
and Signal Processing (2007), which is hereby incorporated
by reference in its entirety, to achieve multiscale color-texture
segmentations.

The task of segmenting images in perceptually uniform
color spaces is an ongoing area of research in image process-
ing. Paschos et al. “Perceptually Uniform Color Spaces For
Color Texture Analysis: An Empirical Evaluation,” /EEE
Transactions on Image Processing 10(6):932-937 (2001),
which is hereby incorporated by reference in its entirety,
proposed an evaluation methodology for analyzing the per-
formance of various color spaces for color texture analysis
methods such as segmentation and classification. The work
showed that uniform/approximately uniform color spaces
such as L*a*b* L*u*v* and HSV possess a performance
advantage over RGB, a non uniform color space traditionally
used for color representation. The use of these color spaces
was found to be suited for the calculation of color difference
using the Euclidean distance, employed in many segmenta-
tion methods. Yoon et al. “Color Image Segmentation Con-
sidering the Human Sensitivity For Color Pattern Variations,”
SPIE Proceedings 4572:269-278 (2001), which is hereby
incorporated by reference in its entirety, utilized this principle
to propose a Color Complexity Measure (CCM) for general-
izing the K-means clustering method, in the CIE L*a*b*
space. Chen et al. “Contrast-Based Color Image Segmenta-
tion,” IEEE Signal Processing Letters, 11(7): 64 1-644
(2004), which is hereby incorporated by reference in its
entirety, employed color difference in the CIE L*a*b* space
to propose directional color contrast segmentations. Contrast
generation as a function of the minimum and maximum value
of'the Euclidean distance in the CIE L*a*b* space, was seen
in the work of Chang et al. “Color-Texture Segmentation of
Medical Images Based on Local Contrast Information,” /JEEE
Symposium on Computational Intelligence in Bioinformatics
and Computational Biology pp. 488-493 (2007), which is
hereby incorporated by reference in its entirety. This contrast
map, subjected to noise removal and edge enhancement to
generate an Improved Contrast Map (ICMap), was the pro-
posed solution to the problem of over-segmentation in the
JSEG method. More recently, Gao et al. “A Novel Multireso-
Iution Color Image Segmentation Technique and its Applica-
tion to Dermatoscopic Image Segmentation,” in /[EEE Inter-
national Conference on Image Processing (2000), which is
hereby incorporated by reference in its entirety, introduced a
‘narrow-band’ scheme for multiresolution processing of
images by utilizing the MRF expectations-maximization
principle in the L*u*v* space. This technique was found to be
competent especially for segmenting dermatoscopic images.
Lefevre et al. “Multiresolution Color Image Segmentation
Applied to Background Extraction in Outdoor Images,” IS&T
European Conference on Color in Graphics, lmage and
Vision, Poitiers, France, pp. 363-367 (2002), which is hereby
incorporated by reference in its entirety, performed multi-
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resolution image segmentation in the HSV space, applied to
the problem of background extraction in outdoor images.

Color gradient-based segmentation is a new contemporary
methodology in the segmentation realm. Dynamic color gra-
dient thresholding (DCGT) was first seen in the work by
Balasubramanian et al. “Unsupervised Color Image Segmen-
tation By Dynamic Color Gradient Thresholding” Proceed-
ings of SPIE/IS&T: Electronic Imaging Symposium, San
Jose, Calif. (2008), which is hereby incorporated by reference
in its entirety. The DCGT technique was primarily used to
guide the region growth procedure, laying emphasis on color
homogenous and color transition regions without generating
edges. However this method faced problems of over segmen-
tation due to lack of a texture descriptor and proved to be
computationally expensive. Garcia et al. “Automatic Color
Image Segmentation By Dynamic Region Growth and Mul-
timodal Merging of Color and Texture Information”, Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, Las Vegas, Nev., (2008), which is hereby
incorporated by reference in its entirety, proposed a segmen-
tation method that was an enhanced version of the DCGT
technique (abbreviated here as Gradient Segmentation (GS)
algorithm) by incorporating an entropic texture descriptor
and a multiresolution merging procedure. The method
brought significant improvement in the segmentation quality
and computational costs, but was not fast enough to meet real
time practical applications.

There remains a need for segmentation methods that effi-
ciently facilitate: 1) selective access and manipulation of
individual content in images based on desired level of detail,
2) handling sub sampled versions of the input images and
decently robust to scalability, 3) a good compromise between
quality and speed, laying the foundation for fast and intelli-
gent object/region based real-world applications of color

imagery.
BRIEF DESCRIPTION OF THE DRAWINGS

This patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 is a flow chart of an overview of a method for
multi-resolution and progressive gradient segmentation in
accordance with embodiments of the present invention;

FIG. 2 is a diagram of image rendering using the method
for multi-resolution and progressive gradient segmentation;

FIG. 3 is a diagram of content based image retrieval using
the method for multi-resolution and progressive gradient seg-
mentation;

FIG. 4(a) is a diagram of multiresolution image represen-
tation;

FIG. 4 (b) is a diagram of an analysis filter bank;

FIG. 5 is a detailed flow chart of the method for multi-
resolution and progressive gradient segmentation in accor-
dance with embodiments of the present invention;

FIG. 6(a) is a gradient histogram of a parachute;

FIG. 6(b) is a gradient histogram of a Cheetah;

FIG. 6(c) is a gradient histogram of cars;

FIG. 7(a) is a graph of a gradient histogram of RBG versus
CIE L*a*b* of a parachute;

FIG. 7(b) is a graph of a gradient histogram of RBG versus
CIE L*a*b* of a Cheetah;

FIG. 7(c) is a graph of a gradient histogram of RBG versus
CIE L*a*b* of cars;

FIG. 8 is a mean color (I.*a*b*) gradient histogram of 300
images of the Berkeley database;
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FIG. 9(a) is an image of an RGB version of the image of the
parachute;

FIG. 9(b) is an image of an L*a*b* version of the image of
the parachute;

FIG. 9(c) is an image of an initial cluster generated at A=5
of the image of the parachute;

FIG. 9(d) is an image of an initial cluster generated at A=10
of the image of the parachute;

FIG. 10 is a histogram based on adaptive gradient thresh-
olding;

FIG. 11 is a flow chart of a method of adaptive gradient
thresholding;

FIG. 12 is a graph of static versus adaptively generated
thresholds for the cheetah image;

FIG. 13 is a graph of multiresolution gradient histograms
of the cheetah image;

FIG. 14 is a flowchart of a method of determining a number
of decomposition levels;

FIG. 15 are images of a star fish illustrating a two level
decomposition with corresponding designations;

FIG. 16 is a flow chart of a method for progressive region
growth involving distributed dynamic seed addition;

FIG. 17(a) is an L*a*b* (81x121) image of a car;

FIG.17(b) is an image of a corresponding color gradient of
the ‘Cars’ image;

FIG. 17(c) is an image of initial clusters generated at A=5,
50*MSS; of the ‘Cars’ image;

FIG. 17(d) is a logical seed map of the ‘Cars’ image;

FIG. 17(e) is a logical seed map after dilation of the ‘Cars’
image;

FIG. 17(f) is a gradient map of the ‘Cars’ image with
padded seeds;

FIG. 17(g) is an image of initial clusters at A+5 (10),
25*MSS; of the ‘Cars’ image;

FIG. 17(h) is an image of parent seeds of the ‘Cars’ image;

FIG. 18(a) is a logical parent seeds map of ‘Cars’ image;

FIG. 18(b) is an image of unassigned pixels of the ‘Cars’
image;

FIG. 18(c) is an image of large unassigned regions of the
‘Cars’ image;

FIG. 18(d) is a map of isolated and small contiguous pixel
regions of the ‘Cars’ image;

FIG. 18(e) is the map shown in FIG. 18(d) after dilation;

FIG. 18(f) is an image of isolated and small seed borders of
the ‘Cars’ image;

FIG. 18(g) is an image of neighborhood labels of the ‘Cars’
image;

FIG. 18(/) an image of label assignment of the ‘Cars’
image;

FIG. 18(i) is an image of seed saturation of the ‘Cars’
image;

FIG. 19 is a gradient histogram of an image of a bird with
adaptive thresholds;

FIG. 20(a) is a map of parent seeds after seed saturation;

FIG. 20(b) is an image of new seeds after threshold incre-
ment;

FIG. 20(c) is an image of parent seed borders;

FIG. 20(d) is a map of adjacent child seeds;

FIG. 20(e) is a seed map after one interval of the region
growth procedure;

FIG. 20(f) is an image of seeds obtained during the first
stage dynamic seed addition procedure;

FIG. 20(g) is an image of parent Seeds for the next region
growth interval;

FIG. 21(a) is an L*a*b* (161x241) image of a car;

FIG. 21(b) is an image of a corresponding color gradient of
the ‘Cars’ image;
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FIG. 21(c) is an image of interim segmentation of an (81x
121) “Cars’ image;

FIG. 21(d) is an image of high confidence seeds of an
(161x241) “Cars’ image;

FIG. 21(e) is a gradient map of the ‘Cars’ image with
padded high confidence seeds;

FIG. 22 (a) is an entire gradient histogram comparison of
the ‘Cars’ image versus unsegmented pixels at the current
dyadic scale of a (161x241) “‘Cars’ image;

FIG. 22(b) is a first zoomed view of the gradient histogram
shown in FIG. 22(a);

FIG. 22(c) is a second zoomed view of the gradient histo-
gram shown in FIG. 22(a);

FIG. 23(a) is a graph classifying threshold intervals for
distributed dynamic seed addition;

FIG. 23(b) is a graph illustrating a zero crossing curve
between red and green curves shown in FIG. 23(a);

FIG. 24(a) is an image of agglomeration of seeds obtained
at decision boundary 1 (gradient value 22) of an image of a
car;

FIG. 24(b) is an overall seed map after an initial phase of
seed addition;

FIG. 24(c) is an image of an agglomeration of obtained
seeds;

FIG. 24(d) is an overall seed map prior to region growth;

FIG. 25(a) is an L*a*b* (321x481) image of a car;

FIG. 25(b) is an image of a corresponding color gradient of
the ‘Cars’ image;

FIG. 25(¢) is an image of interim segmentation of an (161x
241) ‘Cars’ image;

FIG. 25(d) is an image of high confidence seeds of an
(161x241) “Cars’ image;

FIG. 25(e) is a gradient map of the ‘Cars’ image with
padded high confidence seeds;

FIG. 25(f) is an image of an agglomeration of seeds
obtained at various thresholds lower than the decision gradi-
ent value;

FIG. 25(g) is a seed map after the pre-growth seed addition
process;

FIG. 26 is a gradient histogram comparison of the ‘Cars’
image versus unsegmented pixels at the current dyadic scale
(321x481);

FIG. 27(a) is an MAPGSEG region growth map at Level 1;

FIG. 27(b) is an MAPGSEG region growth map at Level 0;

FIG.27(c) is an image of neighborhood label assignment at
Level 1;

FIG.27(d) is animage of neighborhood label assignment at
Level 0;

FIG. 27(e) is an image of iterative morphological label
assignment at Level 1;

FIG. 27 (f) is an image of iterative morphological label
assignment at Level 0;

FIG. 27(g) is an image of the region growth map using the
GS method before residual pixel label assignment;

FIG. 27(h) is an image of the region growth map using the
GS method after residual pixel label assignment;

FIG. 28 is a flow chart of a method for multiresolution seed
transfer;

FIG. 29(a) is an image of interim output at Level 2;

FIG. 29(b) is an image of interim output at Level 1;

FIG. 29(c) is an image of zero insertion yielding at Level 1;

FIG. 29(d) is an image of zero insertion yielding at Level 0;

FIG. 29(e) is an image of neighborhood label assignment at
Level 1;

FIG. 29(f) is an image of neighborhood label assignment at
Level 0;
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FIG. 29(g) is a zoomed in portion of the result obtained
after zero insertion;

FIG. 30 is a quantized gradient map at Level 1 (161x241);

FIG. 31(a) is a logical map of high confidence pixel loca-
tions corresponding to quantization levels 5 and 12 at a Level
1

FIG.31(b) is a color map of high confidence pixel locations
corresponding to quantization levels 5 and 12 at a Level 1;

FIG. 31(c) is a zoomed in version of the circular region
shown in FIG. 31(5);

FIG. 32(a) is a color map of high confidence pixel locations
of'an image of a car;

FIG. 32(b) is an image of mutual seed border regions of
high confidence pixel locations of the ‘Cars’ image;

FIG. 32(c) is a color map of high confidence pixel locations
of'the ‘Cars’ image after mutual seed border regions removal;

FIG. 32(d) is an image of large confident regions of the
‘Cars’ image;

FIG. 32(e) is an image of large confident regions seed
borders of the ‘Cars’ image;

FIG. 32(f) is an image of mutual seed border region labels
of'the ‘Cars’ image;

FIG. 32(g) is an image of high confidence mutual seed
border regions of the ‘Cars’ image;

FIG. 32(%) is an image of a-priori information after border
refinement of the ‘Cars’ image;

FIG. 33 is a Euclidean space representation of L*a*b*;

FIG. 34(a) is a multiresolution representation of a color
converted ‘Star fish’ image;

FIG. 34(b) is a multiresolution representation of a color
gradient of the “Star fish’ image;

FIG. 34(c) is a multiresolution representation of seeds
maps at the end of progressive region growth of the Star fish’
image;

FIG. 34(d) is a multiresolution representation of entropy
based texture maps of the Star fish’ image;

FIG. 34(e) is a multiresolution representation of interim
and final segmentation outputs of the ‘Star fish’ image;

FIG. 35(a) is an image of interim segmentation of the ‘Star
fish’ image at Level 2;

FIG. 35(b) is an image of interim segmentation of the ‘Star
fish’ image unconverted to Level 1;

FIG. 35(c) is an image of a-priori information of the ‘Star
fish’ image at Level 1;

FIG. 35(d) is an image of interim segmentation of the ‘Star
fish’ image at Level 1;

FIG. 35(e) is an image of interim segmentation of the ‘Star
fish’ image unconverted to Level 0;

FIG. 35(f) is an image of a-priori information of the ‘Star
fish’ image at Level 0;

FIG. 35(g) is an image of MAPGSEG final segmentation
output of the “Star fish’ image;

FIG. 36(a) is an original image of a ‘Church’;

FIG. 36(b) is an image of Gibbs Random Field ‘Church’
results;

FIG. 36(c) is an image of JSEG ‘Church’ results;

FIG. 36(d) is an image of DCGT ‘Church’ results;

FIG. 36(e) is an image of GS ‘Church’ results;

FIG. 36(f) is an image of MAPGSEG ‘Church’ results;

FIG. 37(a) is an original image of a ‘Parachute’;

FIG. 37(b) is an image of GRF ‘Parachute’ results;

FIG. 37(c) is an image of JSEG ‘Parachute’ results;

FIG. 37(d) is an image of DCGT ‘Parachute’ results;

FIG. 37(e) is an image of GS ‘Parachute’ results;

FIG. 37(f) is an image of MAPGSEG ‘Parachute’ results;

FIG. 38(a) is an original image of a ‘Cheetah’;

FIG. 38(b) is an image of GRF ‘Cheetah’ results;
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FIG. 38(c) is an image of JSEG ‘Cheetah’ results;

FIG. 38(d) is an image of DCGT ‘Cheetah’ results;

FIG. 38(e) is an image of GS ‘Cheetah’ results;

FIG. 38(f) is an image of MAPGSEG ‘Cheetah’ results;

FIG. 39(a) is an original image of ‘Nature’;

FIG. 39(b) is an image of GRF ‘Nature’ results;

FIG. 39(c) is an image of JSEG ‘Nature’ results;

FIG. 39(d) is an image of DCGT ‘Nature’ results;

FIG. 39(e) is an image of GS ‘Nature’ results;

FIG. 39(f) is an image of MAPGSEG ‘Nature’ results;

FIG. 40(a) is an original image of ‘Cars’;

FIG. 40(b) is an image of GRF ‘Cars’ results;

FIG. 40(c) is an image of JSEG ‘Cars’ results;

FIG. 40(d) is an image of DCGT ‘Cars’ results;

FIG. 40(e) is an image of GS ‘Cars’ results;

FIG. 40(f) is an image of MAPGSEG ‘Cars’ results;

FIG. 41(a) is an original image of an ‘Island’;

FIG. 41(b) is an image of DCGT ‘Island’ results;

FIG. 41(c) is an image of GS ‘Island’ results;

FIG. 41(d) is an image of Level 2 MAPGSEG ‘Island’
results;

FIG. 41(e) is an image of Level 1 MAPGSEG ‘Island’
results;

FIG. 41(f) is an image of Level 0 MAPGSEG ‘Island’
results;

FIG. 42 is an image of human segmentation for the ‘Island’
image;

FIG. 43(a) is an original image of ‘Asians’;

FIG. 43(b) is an image of DCGT of ‘Asians’ results;

FIG. 43(c) is an image of GS of ‘Asians’ results;

FIG. 43(d) is an image of Level 2 MAPGSEG ‘Asians’
results;

FIG. 43(e) is an image of Level 1 MAPGSEG ‘Asians’
results;

FIG. 43(f) is an image of Level 0 MAPGSEG ‘Asians’
results;

FIG. 44 is an image of human segmentation for the ‘Asians’
image;

FIG. 45(a) is an original image of a “Tree’;

FIG. 45(b) is an image of GS “Tree’ results;

FIG. 45(c) is an image of Level 3 ‘ree’ results;

FIG. 45(d) is an image of Level 2 ‘Tree’ results;

FIG. 45(e) is an image of Level 1 “Tree’ results;

FIG. 45(f) is an image of Level 0 “Tree’ results;

FIG. 46(a) is an original image of a ‘Road’;

FIG. 46(b) is an image of CSEG ‘Road’ results;

FIG. 46(c) is an image of Level 3 ‘Road’ results;

FIG. 46(d) is an image of Level 2 ‘Road’ results;

FIG. 46(e) is an image of Level 1 ‘Road’ results;

FIG. 46(f) is an image of Level 0 ‘Road’ results;

FIG. 47(a) is a graph of a distribution of NPR scores for
300 images of the Berkeley database from the GRF method;

FIG. 47(b) is a graph of a distribution of NPR scores for
300 images of the Berkeley database from the JSEG method;

FIG. 47(c) is a graph of a distribution of NPR scores for 300
images of the Berkeley database from the DCGT method;

FIG. 47(d) is a graph of a distribution of NPR scores for
300 images of the Berkeley database from the GS method;

FIG. 47(e) is a graph of a distribution of NPR scores for 300
images of the Berkeley database from the MAPSEG method;

FIG. 47(f) is a graph of all method distributions superim-
posed;

FIG. 48(a) is a graph of a computational time comparison
utilizing the Berkeley database (321x421) from the MAPG-
SEG, GS and DCGT method;
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FIG. 48(b) is a graph of a computational time comparison
utilizing the Berkeley database (321x421) from various levels
of MAPGSEG method;

FIG. 48(c) is a graph of a computational time comparison
utilizing a large resolution image database (750x11200) from
MAPGSEG and GS method; and

FIG. 48(d) is a graph of a computational time comparison
utilizing a large resolution image database (750x11200) from
various levels of the MAPGSEG method.

DETAILED DESCRIPTION

An image processing computing device used for adaptive
and progressive gradient-based multi-resolution color image
segmentation includes a central processing unit (CPU) or
processor, a memory, a user input device, a display, and an
interface system, and which are coupled together by a bus or
other link, although the computing system can include other
numbers and types of components, parts, devices, systems,
and elements in other configurations and other types and
numbers of systems which perform other types and numbers
of functions can be used.

The processor in the image processing computing device
executes a program of stored instructions for one or more
aspects of the present invention as described and illustrated
herein, although the processor could execute other numbers
and types of programmed instructions. The memory in the
image processing computing device stores these programmed
instructions for one or more aspects of the present invention
as described and illustrated herein, although some or all of the
programmed instructions could be stored and/or executed
elsewhere. A variety of different types of memory storage
devices, such as a random access memory (RAM) or a read
only memory (ROM) in the system or a floppy disk, hard disk,
CD ROM, or other computer readable medium which is read
from and/or written to by a magnetic, optical, or other reading
and/or writing system that is coupled to one or more proces-
sors, can be used for the memory.

The user input device in the image processing computing
device is used to input information, such as image data,
although the user input device could be used to input other
types of data and interact with other elements. The user input
device can include a computer keyboard and a computer
mouse, although other types and numbers of user input
devices can be used. The display in the image processing
computing device is used to show images by way of example
only, although the display can show other types of informa-
tion The display can include a computer display screen, such
asa CRT or LCD screen, although other types and numbers of
displays could be used.

The interface system in the image processing computing
device is used to operatively couple and communicate
between the computing system with other types of systems
and devices, such as a server system over a communication
network, although other types and numbers of communica-
tion networks or systems with other types and numbers of
connections and configurations to other types and numbers of
systems, devices, and components can be used. By way of
example only, the communication network can use TCP/IP
over Ethernet and industry-standard protocols, including
SOAP, XML, LDAP, and SNMP, although other types and
numbers of communication networks, such as a direct con-
nection, a local area network, a wide area network, modems
and phone lines, e-mail, and wireless communication tech-
nology, each having their own communications protocols,
can be used.
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Although an embodiment of the image processing comput-
ing device is described and illustrated herein, the image pro-
cessing computing device can be implemented on any suit-
able computer system or computing device. It is to be
understood that the devices and systems of the embodiments
described herein are for exemplary purposes, as many varia-
tions of the specific hardware and software used to implement
the embodiments are possible, as will be appreciated by those
skilled in the relevant art(s).

Furthermore, the system of the embodiments described
herein may be conveniently implemented using one or more
general purpose computer systems, microprocessors, digital
signal processors, and micro-controllers, programmed
according to the teachings of the embodiments, as described
and illustrated herein, and as will be appreciated by those
ordinary skill in the art.

In addition, two or more computing systems or devices can
be substituted for the system in any embodiment of the
embodiments. Accordingly, principles and advantages of dis-
tributed processing, such as redundancy and replication also
can be implemented, as desired, to increase the robustness
and performance of the devices and systems of the embodi-
ments. The embodiments may also be implemented on com-
puter system or systems that extend across any suitable net-
work using any suitable interface mechanisms and
communications technologies, including by way of example
only telecommunications in any suitable form (e.g., voice and
modem), wireless communications media, wireless commu-
nications networks, cellular communications networks, G3
communications networks, Public Switched Telephone Net-
work (PSTNs), Packet Data Networks (PDNs), the Internet,
intranets, and combinations thereof.

The embodiments may also be embodied as a computer
readable medium having instructions stored thereon for one
or more aspects of the present invention as described and
illustrated by way of the embodiments herein, as described
herein, which when executed by a processor, cause the pro-
cessor to carry out the steps necessary to implement the
methods of the embodiments, as described and illustrated
herein.

A fast unsupervised multiresolution color image segmen-
tation algorithm which takes advantage of gradient informa-
tion in an adaptive and progressive framework in accordance
with disclosed embodiments is described below. This gradi-
ent-based segmentation method is initiated with a dyadic
wavelet decomposition scheme of an arbitrary input image,
accompanied by a vector gradient calculation of its color
converted counterpart. The resultant gradient map is used to
automatically and adaptively generate thresholds for segre-
gating regions of varying gradient densities, at different reso-
Iution levels of the input image pyramid. At each level, the
classification obtained by a progressively thresholded growth
procedure is integrated with an entropy-based texture model
utilizing a unique region merging procedure to obtain an
interim segmentation. In combination with a confidence map
and non-linear spatial filtering techniques, regions of high
confidence are passed from one resolution level to another
until the final segmentation at highest (original) resolution is
achieved. Performance evaluation of results obtained in
accordance with embodiments of the present invention on
several hundred images utilizing the Normalized Probabilis-
tic Rand index demonstrates that the present invention com-
putationally outperforms published segmentation techniques
while obtaining superior quality.

An example of an unsupervised Multiresolution Adaptive
and Progressive Gradient-based color image SEGmentation
(MAPGSEG) method in accordance with the present inven-
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tion is described herein, facilitating: 1) selective access and
manipulation of individual content in images based on
desired level of detail, 2) treatment of sub sampled versions of
images with robustness to scalability, 3) a potential solution
that computationally measures up to meet the demands of
most practical applications involving segmentation, and 4) a
practical compromise between quality and speed, laying the
foundation for fast and intelligent object/region based real-
world applications of color imagery.

An overview of a method for and progressive gradient-
based multi-resolution color image segmentation in accor-
dance with embodiments of the present invention is illus-
trated in FIG. 1. The method begins with a vector gradient
computation (Lee et al., “Detecting Boundaries in a Vector
Field,” IEEE Transactions on Signal Processing 39(5):1181-
1194 (1991), which is hereby incorporated by reference in its
entirety) in CIE L*a*b* color space on the input image at full
resolution, followed by a wavelet decomposition to obtain a
pyramid representation of it. Starting at the smallest resolu-
tion, the functionality of color space conversion and gradient
computation includes, but is not limited to, automatically and
adaptively generating thresholds required for initial cluster-
ing, as well as carrying out a computationally efficient region
growth procedure. The resultant classification is combined
with an entropy-based texture model and statistical procedure
to obtain an interim segmentation representing a certain
degree of detail, in comparison to the original input. The up
scaled version of this interim result is utilized as a-priori
knowledge for segmenting the next higher resolution,
wherein regions of high confidence are determined subse-
quently passed on to a fresh run of the method for facilitating
the processing of the remaining unsegmented areas of the
image, with minimal computational costs. The aforemen-
tioned protocol progresses from one resolution level to
another until the segmentation at highest (original) resolution
is achieved. Thus the proposed technique is essentially based
on the principle that the segmentation results of low-resolu-
tion images can be utilized to efficiently segment their corre-
sponding high resolution counterparts. In this particular
example, this method is entirely implemented in MATLAB
and tested on a large database of ~745 images, although the
method could be implemented in other manners. Its perfor-
mance was benchmarked against popular segmentation tech-
niques utilizing the NPR index on the same test bed of images
in the Berkeley database. The evaluation results show that the
MAPGSEG method computationally outperforms published
techniques while exhibiting superior segmentation quality.

Image segmentation has wide spread medical, military and
commercial interests. One particular embodiment of the
method is designed from a commercial standpoint with an
emphasis on performance. Several applications that can take
advantage of the capabilities of this method are illustrated for
exemplary purposes.

Image Rendering

Rendering is often utilized in cameras and printers to
acquire images with superior visual or print quality. This
application is a tool that comes closest to transmuting reality
to a photograph or printer output. A typical region/object
oriented rendering method, designed for better print quality is
shown in FIG. 2.

The rendering procedure illustrated in FIG. 2 is com-
menced by segmenting the input image using the MAPGSEG
method. As can be seen, the output of the MAPGSEG
includes multiple interim results and a final segmentation.
Interim output 1 obtained at the lowest resolution, represents
a coarse segmentation where only the low gradient regions
such as the sky and mountain are well represented. Interim
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output 2 is the segmentation result at the next higher resolu-
tion where more detail associated with vegetation and man-
made structures is seen. The final result shows fine detail with
well defined edges for all regions. This hierarchy of detail and
corresponding computational performance can be utilized for
efficient and intelligent rendering. Thus if the rendering
objective is just limited to the low gradient regions then
customized rendering intents can be applied to these regions
extracted from the up scaled coarse segmentation, to achieve
better print quality. The advantage is that the coarse result
achieved is much faster than its higher resolution counter-
parts. Furthermore, the up scaling operation is performed to
acquire a coarse segmentation at the same resolution of the
input image. As the scope of the rendering intentions are
increased, higher resolution segmentations can be utilized.
This multiscale segmentation-integrated rendering approach
is much more flexible and computationally inexpensive than
utilizing an approach that operates only on a single scale.
Content Based Image Retrieval (CBIR)

Content based image retrieval also known as Query By
Image Content (QBIC) is defined as the process of sifting
through large archives of digital images based on color, tex-
ture, orientation features, and other image content such as
objects and shapes.

FIG. 3 illustrates the advantage of incorporating the
MAPGSEG method for region-based image retrieval. Here
again, if the objective of the retrieval procedure is to acquire
images with low gradient regions such as sky then a low
resolution version of the input query image would suffice.
The query image at an arbitrary low resolution and its corre-
sponding segmentation can be given as inputs to a region
classification method which identifies sky without much hin-
drance, owed to its low gradient content. Moreover, the afore-
mentioned inputs along with the classification output can be
used for an effective retrieval procedure. The computational
costs are significantly reduced because all operations are
performed at a lower resolution of the query image. Regions
of higher gradient densities (such as grass in FIG. 3) can be
similarly used for retrieval at bigger resolutions.

Technical concepts for the optimal implementation and
understanding of embodiments of the method of the present
invention are described herein. Firstly, a mathematical insight
into the Wavelet Transform is provided, the foundation on
which the wavelet theory has been established. Secondly, a
brief discussion involving the extension of the wavelet trans-
form for pyramidal image representations and its practical
implementation using filter banks is provided, which is
important from a multiresolution analysis standpoint.
Thirdly, a brief description of the CIE L*a*b* color space and
its characteristics that helped develop this method is given.
Fourthly, a brief description of the Multivariate ANalysis Of
Variance (MANOVA) data analysis statistical procedure has
been provided. Finally, a segmentation evaluation metric
known as the Normalized Probabilistic Rand Index, utilized
to determine the performance of the present invention from a
qualitative standpoint, has been discussed.

Wavelet Transform

Wavelets are powerful tools capable of dividing data into
various frequency bands describing, in general, the horizon-
tal, vertical, and diagonal spatial frequency characteristics of
the data. A detailed mathematical analysis of initial multi-
resolution image representation models and its relation to the
Wavelet Transform (WT) can be seen in the work of Mallat et
al. “A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation,” [EEE Tramnsactions on Pattern
Analysis and Machine Intelligence 11(7):674-693 (1989),
which is hereby incorporated by reference in its entirety. Let
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L? (R) denote the Hilbert space of square integrable 1-D
functions f(x). The dilation of this function by a scaling com-
ponent s can be represented as:

Sux)~Veflsx) M.

The WT can be defined by decomposing a signal into a
class of functions obtained by the translation and dilation of'a
function y(x). Here, 1(x) is called a wavelet and the class of
functions is defined, using (1), by (Vs (s(x-1))(,mer? TO
this effect, the WT is defined as:

il 2

Wf(s, u) = f FOVs yisx —u)dx. @

An inner product representation of Eq. (2) can be written
as:

1,100~ ) x-1) G).

To enable the reconstruction of f(x) from Wi(s, u) the
Fourier transform of 1(x) must comply with:

oo [ (€3]
Cv:f de<+oo.
— w

13

Eq. (4) signifies that ((0)=0, and {(x) is small in the
vicinity of w=0. Therefore, {(x) can be construed as the
impulse response of a Band Pass Filter (BPF). WT canbe now
written as a convolution product given as:

RS, )= (1) ®

where 11)5. P, (x)—~(x). Thus, a WT can be interpreted as a
filtering of {(x) with a BPF whose impulse response is 1 (x).
Furthermore from the aforementioned discussion it can be
seen that the resolution of a WT varies with scale parameter s.

Sampling s, u and selecting a sequence of scales (/ )jezs CAN
be utilized to discretize the WT. Thus Eq. (5) can be rewritten
as

e u)~.() (6).

For the characterization of the decomposed signal in each
channel, a uniform sampling rate proportional to & must be
used. Let the uniform sampling rate be /p at a scale &’. The
Discrete Wavelet Transform (DWT) can be defined as:

. . oo . 7
Waf (j. n = Wfa? na) = f foa—nperidx

= f#d,inBa).

Multiresolution Image Decomposition

A signal f (x) at resolution r can be acquired by filtering f
(x) with a Low Pass Filter (LPF) whose bandwidth is propor-
tional to the desired uniform sampling rate r, of the filtered
result (S. G. Mallat, “A Theory for Multiresolution Signal
Decomposition The Wavelet Representation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 11(7):
674-693 (1989), which is hereby incorporated by reference in
its entirety). To negate the possibility of inconsistency with
resolution variation these LPE’s are obtained from a function
0(x) dilated by the resolution parameter r and can be repre-
sented in form identical to that of Eq. (1), given below:

0,=V10(x) ®).
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Likewise to Eq. (7) the discrete approximation of a func-
tion f (x) on a dyadic array of resolutions (2")].62 can be rep-
resented as:

Aif(f05(27R)),ez ©).

Eq. (9) represents an important category of the DWT
known as orthogonal wavelets. Consequently, a wavelet
orthonormal basis corresponds to the DWT for a=2 and =1.
Although orthonormal basis can be constructed for scale
sequences other than (2 )jez> in general dyadic scales are used
because they result in simple decomposition methods. For
pyramidal multiresolution image representations, 8(x) is cho-
sen with a Fourier transform defined by:

+oo

Bw) = ]_[ U(e 2Py,

p=1

10

Where U(e™") represents the transfer function of a discrete
filter U=(u,),,.- Subsequently, the approximation of a func-
tion f(x) at a scale ('), is obtained by filtering A,nif, ., with
U and restoring every alternate sample in the resultant con-
volution, written as:

A=A U=(M)nez an

Aoif~(hap)nez 12
where A nf=(f*0,m(n2"9*)), . Eq. (11) and (12) can be
utilized iteratively to find the approximation of the signal f(x)
at any dyadic resolution (277, I>0 where 0=j=-]). Further-
more apart from an estimate, the details of a signal at a
particular resolution can be also obtained. From Eq. (11) and
(12) it can be seen that A,wf has double the number of
samples in Af. Thus the details D, at a resolution 2/ is given
by:

Dyjf=dyif-A5%f (13)

where A, “fis the expanded version of A,f acquired by insert-
ing a zero between each of its samples followed by filtering
the resultant signal with an LPF.

Altogether, the previously mentioned discussion can be
utilized to develop a multiresolution wavelet model. Earlier,
Eq. (9) represented the estimate of f(x) at a scale of 2, utiliz-
ing Eq. (3) and (5) this estimate can be re-written as:

A~ S0 85-291)) ez

In addition, the best estimate of f(x) at a resolution 2’ can be
derived to be the orthogonal projection of the signal on the
array of all possible estimates designated by a vector space
Vi, aproposition of the projection theorem. The array (ng) 7
is known as the multiresolution approximation of L (Ii),
requires an orthonormal basis for its computation. An
orthonormal basis can be acquired by dilating and translating
a scaling function ¢(x), denoted at any 2 resolution (from Eq.
(1) or (8)) as p(x)=Y 2¢(2’x). Thus from the initial definition
of'the WT the class of functions (¢(x-27n)),.,can be called

the orthonormal basis of the vector space V.. From Eq. (10)
we have:

(14).

N (15)
)= [ | He#).

p=1

Here H(e™™®) is the transfer function of a discrete filter.
Furthermore if:

|H(e ™) P+ H-(e7)1>=1 (16)
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then the discrete filters represented by H=(h,,),,., are called as
quadrature mirror filters. In addition, the orthogonal projec-
tion of f(x) on V is given by:

Pai (10 = D @), by u =2 )y (6 = 27m) an

neZ

represents the best estimate of f{x). Now A,f'is expressed in
terms of ¢(x) instead of O(x) being an LPF. Thus Eq. (9)
becomes:

Agif =(f 28,27, = (f(0), by (x=27m))) . (18)

neZ

Utilizing Eq. (15), (18) in conjunction with Eq. (11) and
(12) the discrete approximations A,f of a signal f (x) at a
resolution 2 can be obtained. In addition, the approximation
of a signal at a resolution 27*! in 'V, can be considered to be
better than its counterpart at a resolution 2 in V.. The differ-
ence in detail between the two resolutions is given by the
orthogonal projection of f(x) on the orthogonal complement
of V1 in V4, denoted as O.:. Hence, O, orthogonal to V., is
given by:

OyTC =Vt (19).

The orthogonal projection of {(x) onto O, can be obtained
in a manner similar to orthogonal projection of {(x) onto V.

However, if Y,i(x)=Y 2(2x) is denoted to be the scaling
function and (\P5(x~27n)), ., to be the orthonormal basis in
this case, the Fourier transform of 1 (x) is given by:

P(20)=Gle™)p(w) and Ge™)=e"H(e ") (20)

where G(e™) is the transfer function of a discrete filter
G=(g,),,cz- From Eq. (17) and (18) we have:

Poi (1)) = 3 (F), Yy (0= 2 Imy e = 27 7m) @b

nezZ

Dy f = ({f 00 i =277m))), . 22

Here D f represents the difference in details between succes-
sive dyadic resolutions.

Consequently, from the aforementioned mathematical dis-
cussion of the wavelet theory, it can be concluded that the
notion of multiscale/resolution and quadrature mirror filters
are directly allied to a wavelet orthonormal basis. Without any
loss of generalization, this theory can be extended to 2-D
signals f(X, y). In 2-D, the orthonormal basis is acquired using
three wavelets '(x), P(x), >(x), where each of these can be
considered to be the impulse response of a BPF with a certain
orientation preference. Thus the approximation A, f of a sig-
nal T (x, y) at a scale 2 and its information difference with
A,mf are given as:

Agf=(flx, y) 0327 y=27m)) e 2 (23)
DA 20 5= 29m,9-29m) )2 @4
D2 5, 902252713270} ) e 23)
DA A8 PP 6= 29m,y-29m) )y 26).

Here Df (HL) and D,*f (HH) correspond to the vertical
and horizontal high frequencies respectively, while D.,~, f
(HH) corresponds to high frequency components in both
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directions, represented in FIG. 4(a). However, it must be
noted that in FIG. 4 the scales are in terms of 277, J>0 where
0zj=-J.

Practical implementation of multiscale image decomposi-
tion has been done effectively using filter banks. A filter bank
is defined as an array of filters utilized to separate a signal into
various sub bands, generally designed in a manner to facilitate
reconstruction of the signal by simply combining the
acquired sub bands. The decomposition and reconstruction
procedures are better known as analysis and synthesis respec-
tively. FIG. 4(b) and Table 1(below) portray the analysis filter
bank and the Daubechies 9/7 analysis coefficients (rounded to
16 digits) in the JPEG2000 compression scheme (Christo-
poulos et al., “The JPEG2000 Still Image Coding System: An
Overview,” IEEE Transactions on Consumer Electronics
46(4):1103-1127 (2000), which is hereby incorporated by
reference in its entirety), employed for multiscale analysis in
the MAPGSEG method.

TABLE 1

DAUBECHIES 9/7 ANALYSIS FILTER COEFFICIENTS

i Low Pass Filter h; (i) High Pass Filter hy; (i)

0 0.6029490182363570
0.2668641184428720

1.1150870524569900
-0.5912717631142470

2 -0.0782232665289878 —-0.0575435262284995
+3 -0.0168641184428749 0.0912717631142494
+4 0.0267487574108097

CIE 1976 L*a*b* Color Space

In 1976 the Commission International de 1”’Eclairage (CIE)
proposed two device independent approximately uniform
color spaces, L*a*b* and L*u*v*, for different industrial
applications with the aim to model the human perception of
color. One important objective these color spaces were ableto
achieve with reasonable consistency was that, given two col-
ors, the magnitude difference of the numerical values
between them was proportional to the perceived difference as
seen by the human eye (Green et al., Color Engineering, John
Wiley and Sons Ltd. (2002), which is hereby incorporated by
reference in its entirety). Experimental data was used to
model the response of a person through tristimulus values X,
Y and Z, which are linear transformations from R,G and B.
Using these tristimulus values the CIE L*a*b* was defined
as:

13 )
)

Y,
X By 1B 28)
o 500((X—n) () ]
y .13 7 \153 (29
b« 200(( ) _(Z_n) ]

where X, Y, and Z,, are the tristimulus values of a reference
white.
Multivariate ANalysis of Variance (MANOVA)

The Multivariate ANalysis of Variance abbreviated as
MANOVA, is a popular statistical method employed in high-
lighting differences between groups of data (W. J. Krza-
nowski, Principles of Multivariate Analysis, Oxford Univer-
sity Press, chapter 11 (1988), which is hereby incorporated by
reference in its entirety) cumulatively structured in the form
of'a matrix of dimensions nxp, in which n samples are divided

20

25

30

40

45

50

55

60

65

18
into g groups, where each sample is associated with p vari-
ables X, X,, . . ., X,,. To this effect, the goal of the MANOVA
procedure is to find the optimal single direction in the p-di-
mensional space, so as to conveniently view differences
between various groups.

In the general case of p variables, any direction in the
p-dimensional space can be designated as a linear combina-
tion of certain vectors (a,, a,, . . . , a,), which can be utilized
to convert every p-variate sample to a univariate observation
y/~a'x,, where a”=(a,, a,, . . ., a,). However since the n data
samples are divided into g groups, the obtained univariate
observatlons are re -labeled as y,; denoting the y value for the
i? sample in the i” group, where i=1 . .. g and j=1 . .1, In
order to establish whether the aforementioned univariate
observations demonstrate differences between groups, the
total sum-of-squares of y,; is partitioned into its Sum-of-
Squares Between (SSB)-groups and Sum-of-Squares Within
(SSW)-groups components, defined as:

g g T (30)
SSB@) =Y my(y; -7 and SSWia)= > > (v - )™

i=1 i=1 j=1

Here,

Mw

&
EOEEDWIEEY

=1 j=1 i

nll

and the notation (a) in Eq. (30) is utilized to underscore the
fact that the SSB and SSW components vary with the choice
of a. Utilizing these components a mean square ratio (F), to
highlight group differences, is obtained as:

Fe BD

1 1
{ = 1)SSB(a)}/{ e SSW(a)}.

From Eq. (31) it can be observed that the larger the value of F,
the more variability exists between groups than within
groups. Consequently, the optimal choice of the coefficients
a’=(a,, a,, ..., a,) will be the one that yields the largest value
for F.

However, to ascertain the optimal values of a, multivariate
analogues of the between-groups and within-groups sum of
squares components used in the univariate analysis of the
variance are computed, and defined as:

(32)
(% - D& -7

s

o

nj

Wo=D >y =) =)

=1 j=1

where B, known as the between-groups sum-of-squares and
products matrix and W, known as the within-groups sum-of-
squares and products matrix, should be positive definite
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matrices. Furthermore, the notations x,, X;, X are analogous to
Yy Yir ¥ Yespectively. Since y, =a’x,; Egs. (31), (32) can be
re-written as:

SSB(a) = a” Bya and SSW(a) = a’ Woa (33)
F= {ﬁSSB(a)} / {(nlfg)sswm)} G4
1 1
= {maTBoa}/{maTWOa}
a’Ba
= dWa

where B=B,/(g-1) and W=W /(n-g) are the between-groups
and within-groups covariance matrices respectively.

The choice of the coefficients a’=(a,, a,, . . . , a,) which
maximizes the value of F in Eq. (34) signifies the optimal
single direction (or the best linear combination y=a’x) in the
p-dimensional space, so as to highlight differences between
various groups, and can be obtained by differentiating Eq.
(34) with respect to a and assigning result to zero. To this
effect, we have:

a’Ba (35)

Ba—|———|Wa=0= Ba-I[Wa
aTWa

=0= (B=IW)
=0= (W'B=1IDha

=0

where a” Ba/a”Wa=1 is a constant, equal to the maximum
value of the mean square ratio(F). Also, for Eq. (35) to be
satisfied, it can be inferred that 1 must be an eigenvalue and a
must be an eigenvector of W™'B. Moreover, since 1 is constant
value at the maximum of F, a must be eigenvector associated
with the largest eigenvalue of W™'B, that determines the
optimal linear combination y=a’x. Note that for a distinct
separation of groups (greater variability between groups than
within groups), 1 will be significantly greater than unity.

When the number of groups (g) or the dimensionality of the
original space (p) is large, the goal of determining a single
direction in the p-dimension space renders an inefficient solu-
tion to view disparities between various groups. However,
since Eq. (35) often possesses more than one solution, mul-
tiple differentiating directions can be generated, whose effi-
ciency in delineating groups of data depends on the magni-
tude of the eigenvalue/eigenvector pairs. To this effect, if Eq.
(35) possessed s non-zero eigenvalues (1;, 1,, . . ., 1)) with
corresponding eigenvectors (a;, a,, . . . , a,), a set of new
variates (Y, ¥, - - - » Ys) kKnow as canonical variates can be
obtained according to y,=a,’x,, and the space spanning all y,’s
is termed as a canonical variate space. Following this, Eq.
(18) can be re-written in matrix terms as BA=WAL, where A
is matrix of all a,”s of dimensions (pxs), while L is matrix of
all 1,’s of dimensions (sxs). Furthermore, in this space, the
mean of an arbitrary i group of individuals can be repre-
sented as y=AX,.

An appropriate measure to quantify the variability between
two random groups (i” and ) of data is the distance between
the corresponding group means, given by:

D7) M) = D7) MG-,) (36).
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Here M is a matrix that modifies the influence of each variate
in the aforementioned distance computation. Moreover, to
exploit the covariances between variables and as well as
differential variances, M can be chosen to be the inverse of the
Within-groups dispersion matrix (W). The resultant distance
measure for this choice of M yields the Mahalanobis distance,
defined as:

D=((=2) W (33)' P = DP=((-3) T )
The Euclidean between i” and the j* groups in the canoni-

cal variate space after substitution for y, and y,, can be written
as:

(7).

D= Oy P = DP=((-%) 44 6-)
Furthermore, it can be shown that AA”=W~!, resulting in
Eq. (38) being equal to Eq. (37). Thus, by generating a
canonical variate space in a manner described in this section,
the Euclidean distance between the group means in this space
is equivalent to the Mahalanobis distance in the original p-di-
mension space. Moreover, since the Mahalanobis distance
metric takes in to consideration the covariance and differen-
tial variance between variables, this distance measure is uti-
lized to measure of variability between two multivariate
populations.
Quantitative Evaluation of Segmentation Methods

To objectively measure the quality of our segmentation
results, we have selected a recently proposed generic tech-
nique of evaluating segmentation correctness, referred to as
the Normalized Probabilistic Rand (NPR) index (Unnikrish-
nan et al., “Toward Objective Evaluation of Image Segmen-
tation Methods,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(6):929-944 (2007), which is hereby
incorporated by reference in its entirety), designed such that:
1) itdoes not yield cases where the evaluation produces a high
value in spite of the automatic segmentation result being
nowhere closely similar to any one of its corresponding
ground truths (nondegeneracy), 2) no assumptions are made
about label assignments and region sizes, 3) it penalizes the
evaluation score when the automatic segmentation fails to
distinguish between regions that humans can distinctly iden-
tify and facilitates for lesser penalty in regions that are visu-
ally ambiguous (adaptive accommodation of label refine-
ment), and 4) it facilitates comparison amongst multiple
ground truths of the same image as well as of different
images. The following subsections briefly discuss the math-
ematical preliminaries used for implementing the NPR evalu-
ation methodology.

Rand Index (R)

The Rand Index, first instituted by William Rand (Unni-
krishnan et al., “Measures of Similarity,” IEEE Workshop on
Applications of Computer Vision, pp. 394-400 (2005), which
is hereby incorporated by reference in its entirety), facilitates
the comparison of two arbitrary segmentations utilizing pair
wise label relationships. It is defined as the ratio of number of
pixel pairs that share the same label relationship in two seg-
mentations, and is represented as:

(38).

—

(B39

R(S, §') = —Z UG =LA = 0) + 1 % AL = 1),

(N] —
A
2 #j

Here S and S' are two segmentations of an image compris-
ing of N pixels, with corresponding label assignments and
{,} and {1/} wherel i=1, 2, . . . , N. Furthermore, 1 is the
identity function, " represents a logical conjunction (‘AND’
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operation), and the denominator represents all possible
unique pixel pairs in a dataset of N points. The Rand Index
varies from 0 to 1, where O represents complete dissimilarity
and 1 symbolizes that S and S' are identical. The Rand index
is disadvantaged by its capability of handling only one ground
truth segmentation for evaluation and its inability to accom-
modate adaptive label refinement.
Probabilistic Rand (PR) Index

The Probabilistic Rand Index (Unnikrislman et al., “Mea-
sures of Similarity,” IEEE Workshop on Applications of Com-
puter Vision, pp. 394-400 (2005), which is hereby incorpo-
rated by reference in its entirety), enables evaluation of
segmentation correctness, taking into consideration the sta-
tistical nature of the Rand Index. The PR index allows com-
parison of a test segmentation result (S, ,,) to a set of multiple
ground-truths (S,, S,, . . . Sg) through a soft non-uniform
weighting of pixel pairs as a function of the variability in the
ground-truth set.

The Probabilistic Rand (PR) Index is defined as:

PR(Spos 15¢]) = — (7 = e )Pl = 1)+ @
( rexta{ K}) = mz [([.SYESY - [S.’L’S’)P(i. - ?)
) 7 i J i F i

i#j

where {15}, {15} respectively represent the label assign-
ment of a pixel i (where i=1, 2, .. . N)in S,,,, and the K”
manual segmentation (S,), while ii denote the set of “true
labels” for a pixel x,. In addition, P(ii:ij), P(il.#ij) represent the
respective probabilities of an identical or distinct label rela-
tionship between a pair of pixels x; and x,, defined as:

“4D

The PR Index takes the same range of values as the Rand
Index, from O to 1 where O signifies complete dissimilarity
and 1 represents a perfect match with ground truths. Although
the PR Index helps overcome the aforementioned drawbacks
of'the Rand Index, it suffers from a deficiency of variation in
its values over a large set of images due to its small effective
range combined with the variation in its maximum value
across images. Moreover the interpretation of the PR index
across images is often ambiguous.

Normalized Probabilistic Rand (NPR) Index

In order to overcome the aforementioned shortcomings of
the PR index, Unnikrishnan et al. “Toward Objective Evalu-
ation of Image Segmentation Algorithms,” /EEE Transac-
tions on Pattern Analysis and Machine Intelligence, 29(6):
929-944 (2007), which is hereby incorporated by reference in
its entirety, proposed the Normalized Probabilistic Rand
(NPR) Index. The NPR metric is referenced to expected value
of the PR Index, and is computed utilizing the variation and
randomness in the set of ground truth images, defined as:

_ PR- Expected Index _ PR- E[PR]
~ max[PR] — Expected Index ~ max[PR] — E[PR]’

NPR “2)
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The normalization with respect to the expected value of the
PR Index results in a much higher range of values, making the
NPR Index a much more robust evaluation metric. In Eq. 25
the maximum value of the PR Index is chosen to be 1 (max
[PR]=1), and the expected value of the PR Index (E[PR]) is
obtained as:

—

43
E[PR(Stest» 1Sk D] =

%)

3 [l = 3]l = 1) E[ 1 < )]l = 1))
b
i<j

To make the computation of E[I(1,==]%+)] meaningful
Unnikrishnan et al. proposed its computation from segmen-
tations of all images from an arbitrary database, for all unor-
dered pixel pairs (i, j). Therefore, if @ is the number of images
in the database and K, is the number of ground truths per
image then E[I(lis"-"’ZIJ.S”-’")] can be computed by:

k=Kg

5 it =1

44

E[[(Z;S’m - lj}esr)] - éz KL
L]
@

where E[I(1,%==1="] signifies that E[PR(S,,,,{S})] is a
weighted sum of PR(S;®,{Sz}). The NPR index computed in
Eq. (42) can posses both positive and negative values, where
negative values occur when the PR index is lower than its
expected value for a given segmentation, signifying a poor
result, while positive values that are significantly greater than
zero (with a maximum value of 1) are considered useful
segmentations.

The MAPGSEG method embodied in six modules is
shown in FIG. 5. The first module (M1) is utilized to adap-
tively generate thresholds required for initial clustering,
region growth at varied levels of the input image pyramid. The
second module (M2) performs dyadic wavelet decomposition
for multiresolution representation of the input image. The
third module (M3) carries out a progressively thresholded
growth procedure involving distributed dynamic seed addi-
tion. Module4 (M4) is responsible for identifying transfer-
able regions from one resolution to another by exploiting the
interim results as a-priori information. Texture modeling is
performed utilizing module5 (MS5). This method culminates
in a region merging module (M6) to give interim segmenta-
tions at low resolutions, and the final segmentation map at a
dyadic scale equal to that of the original input image. Fur-
thermore, it is imperative to note that this method does not
employ all modules at every scale (observe the color coding
legend in FIG. 5). The following sub-sections elucidate each
of these modules in detail.

Adaptive Gradient Thresholding

The segmentation method developed by Garcia et al.
“Automatic Color Image Segmentation By Dynamic Region
Growth and Multimodal Merging of Color and Texture Infor-
mation”, International Conference on Acoustics, Speech and
Signal Processing, Las Vegas, Nev., (2008), which is hereby
incorporated by reference in its entirety, and abbreviated as
the Gradient Segmentation (GS) method utilized fixed thresh-
olds for segmentation, in the RGB color space. Initial clus-
tering was performed using a threshold value of 10, followed
by a region growth procedure carried out at thresholds inter-
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vals of 15, 20, 30, 50, 85, and 120. These fixed thresholds
were utilized for any image irrespective of its content, and
intuitively can be deemed non-ideal, owed to the varied gra-
dient composition present in natural images. This intuitive
notion was substantiated as the fixed thresholds intervals
were found to consistently pose major problems that hindered
the performance of the GS method, clearly demonstrated by
the images in FIG. 6.

Effects of Static Threshold Interval Selection

In FIG. 6 three natural scene images with their correspond-
ing enhanced gradient map histograms, are shown. In addi-
tion marked in green and red along each of the histograms are
the fixed threshold intervals utilized for initial clustering and
region growth respectively. Enhanced gradient maps are
obtained by computing the gradient utilizing the method in
Lee et al., “Detecting Boundaries in a Vector Field,” IEEE
Transactions on Signal Processing 39(5):1181-1194 (1991),
which is hereby incorporated by reference in its entirety, on
the increased and decreased contrast versions of the original
RGB inputs and finding the pixel by pixel maximum among
the two. Increased contrast enhances dark regions and
exposes edges present in these regions. On the contrary
decreased contrast exposes edge information present in bright
areas of the image. Thus, the maximum of the two yields a
gradient map including most edge information present in the
image. Although gradient map enhancement (employed in
the GS algorithm) is useful it comes at the expense of
increased computation, especially for large resolution
images.

In FIG. 6 it can be observed that the varying shape of
gradient histograms from image to image causes the fixed
thresholds to be distributed erratically without following a
uniform pattern, resulting in contrasting segmentation
results. One way of analyzing the effects of static threshold
interval selection is by comparing the gradient content of the
images in each interval. Considering the first two intervals for
region growth, from 10 to 15 and 15 to 20, large gradient
content in the ‘Cheetah’ and ‘Cars’ images is seen within
these intervals, and in contrast for the ‘Parachute’ image the
content is small which may result in over segmentation of flat
regions with higher computational costs. In addition, the GS
method was designed such that, only seeds (a labeled collec-
tion of pixels corresponding to a particular region) which
satisfy a certain minimum size criterion based on the current
stage of the method be considered for further processing. In
such a scenario few minute seeds generated in these low
gradient intervals, in the parachute image may be discarded,
rendering the thresholds constituting this interval to have
negligible contribution to the final segmentation result. Con-
versely, if an interval is very large in comparison to the extent
or span of the histogram, it causes regions with significantly
different gradient detail to be merged together, providing a
segmentation that is incoherent with the original input image
(under segmentation).

Moreover, in FIGS. 6(a) and 6(5) the span of the histogram
both cases is smaller than the final region growth threshold
(120) resulting in wasted computational costs, significantly
effecting the overall performance of the method. Thus, over-
coming these problems necessitated an adaptive thresholding
approach based on image content.

Advantages of CIE L*a*b* Over RGB

The MAPGSEG employs adaptive gradient thresholding
in the CIE 1976 L*a*b* color space. The method begins with
a conversion from RGB to CIE L*a*b for correct color dif-
ferentiation, owed to the fact that the latter is better modeled
for human perception and is more uniform in comparison to
the RGB space. It should be noted that although the CIE
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L*a*b* has been used in the present invention, other color
space models such as the CIE L*u*v*, CIE U*v*w* YIQ and
the like can be used. In general any 3-dimensional color
space/model can be used for obtaining image segmentation in
accordance with the present invention. The [L*a*b* data is
8-bit encoded to values ranging from 0-255 for convenient
color interpretation and to overcome viewing and display
limitations. In addition it has also been widely used for com-
mercial applications. The resultant color converted data is
utilized for computing the vector color gradient utilizing the
previously mentioned method described in Lee et al,
“Detecting Boundaries in a Vector Field,” IEEFE Transactions
on Signal Processing 39(5):1181-1194 (1991), which is
hereby incorporated by reference in its entirety, without any
enhancement methodology. In general for an image, 8-bit
L*a*b* values were found to span over a much smaller range
than 8-bit RGB, consequently resulting in a relatively com-
pact histogram compared to its enhanced RGB counterpart.

In FIGS. 7(a), 7(b) and 7(c), shown are the histogram
comparisons of RGB (inblue) and I *a*b*(in red), along with
the color converted equivalents for the three images in FIG. 6.
It can be observed that the red curves are squeezed versions of
the blue curves, where the span of the red curves are signifi-
cantly smaller than the ones in blue but the amplitude of the
red are much larger in comparison. To this effect, if the
thresholds are limited to the span of the histogram, this
squeezed property is an advantage as the region growth pro-
cedure is now confined to a significantly smaller range and for
any arbitrary threshold interval in this reduced range a higher
number of pixels are worked upon, in comparison to RGB. In
addition, it can be observed that color space changeover to
L*a*b* has enabled distinct differentiation between the chro-
matic and achromatic regions, presenting the method with
this additional piece of information.

Adaptive Threshold Generation

The MAPGSEG method is initiated with a color space
conversion of the input image from RGB to CIE L*a*b* for
reasons specified previously. Using the resultant [L.*a*b*data,
the magnitude of the gradient of the full resolution color
image field is calculated. The threshold values required for
segmentation are determined utilizing the histogram of the
color converted gradient map.

At first, the objective is to select a threshold for the initia-
tion of the seed generation process. Preferably, a threshold
value should be selected to expose most edges while ignoring
the noise present in images. However, accomplishing this task
is precluded by the unique disposition of natural scene
images, where a threshold that correctly demarcates the
periphery of a given region may unify other regions. Due to
this factor, the thresholding method is initiated by estimating
a value A that aids in selecting the regions without any edges
or with extremely weak and imperceptible edges. This thresh-
old primarily is estimated based on the span of the histogram
in combination with empirical data.

Given an image, one of two empirically determined thresh-
old values is proposed to be chosen for initiating the seed
generation process, by validating how far apart the low and
high gradient content in the image are, in its corresponding
histogram. The idea is that a high initial threshold be used for
images in which a large percentage of gradient values spread
over a narrow range and a low initial threshold value be used
for images in which a large percentage of gradient values
spread over a wide range, in comparison to the span of the
histogram. These high and low initial threshold values were
determined by obtaining the mean [.*a*b* gradient histo-
gram of 300 natural scene images present in the publicly
available Berkeley database, shown in FIG. 8.
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As illustrated in FIG. 8, though the histogram span ends at
a gradient value of 143, the gradient content is negligible
beyond 100. Thus from an empirical perspective, a small
percentage of this value was chosen as a suitable threshold for
initiating the threshold method without causing any loss of
strong gradient content (under segmentation). A=5 (5% of
100) is chosen as a suitable value to meet the requirement and
works well for most images where background and fore-
ground have largely indistinguishable gradient detail from
each other. However in images having a slightly varying
background with less gradient detail, well distinguished from
prominent foreground content, it was found that A=5 results
in flat regions being partially selected, potentially resulting in
more processing time or in some cases an over segmentation
result. To avoid this scenario a second threshold A=10 is
preferably chosen for such images. FIGS. 9(a) and 9(6) show
the RGB and color converted versions of the ‘Parachute’
image respectively, after a two level decomposition from
481x321 to 121x81. FIGS. 9(c) and 9(d) show the initial
clusters generated at A=5 and A=10 respectively, at this reso-
Iution. The advantage of using a higher initial threshold can
be observed for this image which is abundant in low gradient
content. In FIG. 9(c) the mountain region is split up as two
seeds when using A=5. However A=10 results in acquiring the
mountain as a single seed and in doing so covering a much
larger homogenous area. This results in faster processing due
to less number of seeds and unsegmented area.

From a practical implementation standpoint, a decision of
selecting the initial threshold (A=5 or A=10) for any arbitrary
image by obtaining the percentage ratio of the gradient values
corresponding to 80% and 100% area under its histogram
curve was made, as shown in FIG. 10. If 80% area under the
histogram curve corresponds to a gradient value that is less
than 10% of the maximum gradient value in the input image,
a high threshold value (A=10) is chosen and a low initial
threshold value is chosen (A=5). Having obtained A, initial
seeds are generated at threshold intervals of A and A+5 to
segment most low gradient regions. Once the thresholds for
the initial seed generation are determined, the challenge is to
calculate threshold limits for various intervals of the region
growth and dynamic seed addition procedure, shown in the
red box of FIG. 11. The initialization threshold discussed in
the embodiment shown in FIG. 11 can be varied based on the
complexity of the image being processed. In general for low
complexity images a high value of the initialization thresh-
olds (A) should be chosen, while for images with highly
complex content a low value is preferred. The choice of the
initialization in this manner ensures appropriate selection of
pixel clusters for initializing region formation. In general a
preferred range of (A) is about 5% to 10% of the maximum
gradient value in the image. Once A is determined a second
threshold in the vicinity of A (typically A+d where preferred
values of d is between 1-5) is picked to ensure proper region
formation.

Dynamic seed generation is that portion of the growth
process where additional seeds are added to the initial seeds at
the lowest resolution or existing high confidence seeds at
subsequent higher resolutions. These threshold limits consti-
tuting various intervals selected for region growth are deter-
mined utilizing the area under the gradient histogram that
does not fall within the range of the initial thresholds. The first
threshold (T,, i=1) is determined by adding 10% of this
uncovered area to the area covered by T,_;=A+5 and obtaining
the corresponding gradient value. This process is continued
for each new stage of the dynamic seed addition procedure
where a 10% increment of the uncovered area at each stage is
added to the area already covered by the threshold value of'its
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corresponding previous stage (A,_,) as illustrated in FIG. 10
and FIG. 11. Five iterations of the process yielding four
growth intervals were determined to be sufficient to cover all
significant areas of the input image. Calculating the growth
intervals in this manner is done in order to 1) make certain that
regions of significant size are always added to the segmenta-
tion map, 2) ensure that all thresholds lie within span of the
histogram, avoiding the possibility of wasted computational
efficiency, and 3) account for the exponential decay of the
gradient map histograms of natural scene images as seen in
FIG. 10.

In the general sense a threshold value (T,) that drives seed
addition at the end of an i stage of region growth is deter-
mined by:

G-1

DAk

g=T;_1+1

45)

Tiy
Ti= ) Ny+ilg
2=0

The first summation in Eq. (45) represents the cumulative
image area less than the gradient threshold T,_, that is pro-
cessed in the (i-1)" stage of region growth, while the second
summation represents the cumulative unprocessed image
area greaterthanT,_,. The quantity iAg defined as the ‘growth
factor’, determines the incremental percentage of image area
of higher gradient densities to be processed in the n” stage.
The entire quantity beyond the ‘+’ sign, is known as a Region
Growth Interval (RGI), which represents the range of gradient
values from T,_, to T, (lower and upper limits of the i” RGI.
In this manner utilizing Eq. (45) and an initialization thresh-
old (M), segmentation thresholds T, to T, differentiating T
RGIs are computed, which are utilized for the previously
mentioned functionalities.

The effect of utilizing the aforementioned threshold gen-
eration procedure is clearly illustrated in FIG. 12. In this
figure (zoomed version of FIG. 7(5)), shown is the compari-
son of static and adaptively generated thresholds for the
‘cheetah’ image. Here the magenta and yellow markers sig-
nify thresholds intervals utilized for initial clustering (A, A+5)
and region growth respectively. It can be observed that these
intervals are distributed along the histogram curve in a man-
ner that they can meaningfully contribute to the segmentation
result. This is clearly seen by comparing the gradient content
in the last few intervals, where the adaptive thresholds cover
more significant areas (on the red curve) than the static thresh-
olds which include much less gradient content (on the blue
curve). It can also be observed that the adaptive thresholds are
all located within the span of the histogram thus avoiding
wasted computational costs. In the MAPGSEG method, the
adaptive thresholds were generated on the full resolution
image (mentioned previously). Once these thresholds were
acquired, the same thresholds were utilized in a progressive
framework for faster segmentation at various resolutions.
This was possible as given any threshold interval, the gradient
content in this interval increases from lower to higher reso-
Iutions with the overall shape of the gradient histogram being
the same, as can be observed in FIG. 13. Therefore in the
MAPGSEG method the threshold generation scheme was
performed only once and the same thresholds were utilized
for segmenting the input image at all resolutions.

Dyadic Wavelet Decomposition

The MAPGSEG method employs a dyadic wavelet decom-
position scheme for multiscale image representation, as
described above. In order to ensure suitable approximations
of the 2-D input signal, the Daubechies (9, 7) biorthogonal
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analysis coefficients similar to the ones used in the JPEG2000
compression scheme, were employed at different resolution
levels. Other coefficients associated with the haar,
Daubechies 4, Daubechies 6, Daubechies 8, coiflet wavelets
and the like, can be used in the present invention. These levels
are designated as L.=0, 1, 2 . . . k for ak-level decomposition.
Since segmentation can be used in multiple applications it is
preferred to make the number of decomposition levels
dynamic, for an arbitrary image. However in order to be able
to achieve this objective a user or application defined variable
called ‘Desired dimension’ is introduced. Desired dimension
(D) is defined as the smallest workable dimension desired by
auser or constrained by an application. Often applications are
restricted by the smallest size of an image that they can
handle. Since a dyadic (power of 2) wavelet decomposition
scheme is employed in the present invention, preferred values
of D are values that are powers of 2 such as 64, 128, 256, 512
etc. Although any value of D can be picked by a user, it should
be noted that D should be chosen to be less than the image
dimension but greater than preferably about 20% of the image
dimension to achieve optimal results. The MAPGSEG
method is designed such that it gives the application or user
the option to set the smallest workable dimension for segmen-
tation. Once D is initialized based on the resolution of the
input image, the method automatically determines the num-
ber of dyadic decomposition levels that will result in the input
image resolution being in the vicinity DXD, since DXD may
or may not be a dyadic scale of the original input. In the case
of'images that are of the form m by n where m=n (rectangular
image) the number of decomposition levels is found by work-
ing with the maximum of m and n and find the number of
levels that will take this maximum value in the vicinity of D
(see FIG. 14). This will result in the smaller dimension to be
automatically mapped such that aspect ratio is constant. In the
MAPGSEG method, we set D=128 and the number of levels
are counted till the maximum dimension of the input is in the
range 0.8*D=maximum (m, n)=1.2*D, as shown in FIG. 14.

Having obtained the number of decomposition levels (L)
based on desired dimension D the input image (L=0) is
decomposed to the smallest resolution (L.=k). In doing so all
the channel (L*, a*, b*) information acquired from the LL sub
band and corresponding size information pertaining to the
intermediate levels (L=k-1, k-2, .. ., 1) are stored. To this
effect the decomposition scheme is performed only once
without having to be repeated for every level. In FIG. 15
shown is a typical dyadic scale image pyramid with desig-
nated levels. It is important to note that all the procedures
described in various embodiments of the present invention
can also be performed on non-dyadic image scales, with the
only major trade off being increased complexity of process-
ing. In general dyadic scales are easy to process, therefore,
and a more preferred embodiment of the present invention.
Multiresolution Region Growing

In accordance with the present invention a multi-resolution
region growing methodology does not depend exclusively on
the initial assignment of clusters, to arrive at the final seg-
mentation. In the GS algorithm the region growth and seed
addition process were interlaced with each other, where every
growth cycle corresponded with a seed addition stage. How-
ever in the MAPGSEG method, a progressively thresholded
growth procedure was preferred where region growth cycles
do nothave an exclusive one-to-one relationship with the seed
addition procedure. The multiresolution region growing pro-
cedure involving distributed dynamic seed addition in accor-
dance with embodiments of the present invention and its
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performance advantages in a multiscale framework is dis-
cussed below. A flow chart of the entire module is shown in
FIG. 16.
Initial Clustering

The initial positioning of seeds utilizing A (either 5 or 10
for a particular image) and A+5 is done only at the lowest
resolution of the image pyramid, as shown in FIG. 16. All
regions in the image, whose gradient value fall below these
thresholds, are classified as initial seeds or Parent Seeds
(PSs). However, to prevent the generation of multiple clusters
within homogeneous and connected regions, PSs are con-
strained to clusters of pixels which are of certain minimum
spatial extent. Spatial constraints (of seed extent) requisited
during various stages of region formation are chosen propor-
tional to a Minimum Seed Size (MSS) criterion that defines
the minimum desired size of an independent seed. The MSS
criterion for region processing at an arbitrary L% decomposi-
tion level (MSS;) is chosen such that: 1) it is very small in
comparison to the corresponding L” level image area (that is
MSS,;<<{d,;dnz}, where d,,, and d,, are the row and col-
umn image dimensions at the ‘kth’ resolution level) to ensure
that fine details are captured in the segmentation process, as
well as 2) it is a function of the down sampling rate 2-
employed during decomposition to warrant the processing of
seeds of ‘meaningful’ sizes in comparison to corresponding
L% scale image area. Consequently, based on the aforemen-
tioned requirements the MSS;,, criterion is computed as:

MSS;=2%a{d;zdnz (46)

where, o is a small percentage (typically 0.01% with pre-
ferred range of 0.01% to 0.1% for optimal results) of the L™
scale image area. The parameter o is preferably chosen so as
to capture all details in the image. The aforementioned ranges
were determined based on this requirement. In addition it can
be observed that as the value of a is increased to larger values
the detail in eventual segmentation decreases and vice versa.
Hence, for the initial clustering phase performed only at the
lowest resolution L=k level (previously mentioned), a Mini-
mum Seed Size criterion proportional to MSS,=2*a{d, ,dx,
is employed.

For the initial clustering phase these size criterions are
obtained as 50*MSS; and 25*MSS,; for A and A+5 respec-
tively, as illustrated in FIG. 17. The ‘Cars’image in F1G. 17(a)
contains a lot of gradient detail as displayed in FIG. 17().
Thus, for initial clustering the threshold A was determined to
be 5. It can be seen that A constrained with size criterion of
50*MSS; utilizing connected component analysis, detects
large flat regions pertaining to the motorway and sky (FIG.
17(c)). Other low gradient regions that are not detected are
acquired by padding the existent seeds generated at A, so that
a threshold increment and size constraint reduction results in
detection of smaller seeds at locations other than the pre-
existing ones. In the method developed by Garcia et al. seed
padding was performed using nonlinear spatial filtering tech-
niques. However, the MAPGSEG method adopts a two step
morphological method for seed padding. Firstly, a logical
map is obtained, comprising 0’s and 1°s where a pixel having
avalue of 1 signifies that it is a part of an existing seed and 0
indicated an unassigned pixel location. This is followed by
the dilation of the logical map by a 3 by 3 structuring element.
The two step seed padding procedure is represented in FIGS.
17(d) and 17(e) respectively. The padded seeds are marked in
the gradient map signifying all locations that are available for
seed generation and vice versa (FIG. 17(f)). The threshold is
incremented to A+5 and the size constraint is reduced to
25*MSS;,, resulting in smaller gradient areas being detected,
as portrayed in FIG. 17(g). Thus it is seen that varying size
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constraints plays a major part in proper region formation.
Note that the multiplication factors of 50 and 25 for the
threshold values of A and A+5 respectively, have been arbi-
trarily set. These can be varied depending on the complexity
of'the image. However in general the multiplicative factor for
threshold A (preferred range of 40 to 60 for optimal results)
should be chosen greater than A+5 (preferred range of 15to 30
for optimal results), for proper region formation. The agglom-
eration of all seeds detected, forming the parent seeds map is
shown in FIG. 17(%). Moreover, the size criterion for addition
of'new seeds at subsequent higher gradient densities is gradu-
ally reduced for proper region formation.
Seed Saturation

The parent seeds map, prior to region growth, is subjected
to a seed saturation process where all isolated and small
unassigned pixel regions encompassed within seed bound-
aries, are assigned the labels of corresponding parent seeds.
However, contiguous unassigned pixel locations larger than
the current size criterion (25*MSS;) are left unassigned as
these are potential locations for new seeds during region
growth. The seed saturation procedure for the parent seeds
map shown in FIG. 17(%) is illustrated in FIG. 18. A logical
map for FIG. 17(k) is portrayed in FIG. 18 (a). The image
negative of this logical map is shown in FIG. 18(5). This
represents all unsegmented pixel locations in the image. In
order to find all the unassigned pixel locations larger than the
current size criterion (25*MSS;) connected component
analysis is employed to the map in FIG. 18(b). The result is
shown in FIG. 18 (¢) and it is these large unsegmented regions
that are passed on to the region growth procedure. In addition,
the large regions are removed from the map including all
unsegmented pixel locations (FIG. 18(b)), to give a map of
isolated and small contiguous pixel regions that can be
directly assigned to the labels of their corresponding encom-
passing parent, shown in FIG. 18(d). However, in order to
achieve this objective the labels of parent surrounding the
small pixel regions need to be known. Parent Seed boundaries
(PS,pmdaries) 18 @ binary map extracted morphologically by
subtracting PSs from their corresponding dilated counter-
parts, mathematically represented as:

o 1 V (i, j) where {(PSs@y)-PSs} >0  47)
PSU, Ppoundaries = .o
0 VY (i, j) where {{PSs@)— PSs} =0
PSs@y ={y e Z? |y =a+b for some ae PSs, b ey} (43)

where (i,j) is a random pixel co-ordinate and PSs &y v
represents the dilation of the PSs map with a 3x3 square
structuring element 1 that posses a value of ‘1’ at every
location. The dilated version of FIG. 18(d) seed map is shown
in FIG. 18(e). All the nonzero pixels in FIG. 18(d) are
removed from its dilated counterpart yielding isolated and
small seed borders shown in FIG. 18(f). This seed border map
is then point wise multiplied with the parent seeds map to
obtain the parent labels in the proximity of the isolated pixels,
as shown in FIG. 18(g). Having obtained all surrounding
parent labels the small and isolated unsegmented pixels are
assigned appropriate labels to complete the seed saturation
process, as presented in FIGS. 18(%) and 18(i) respectively.
The advantage of the seed saturation procedure can be ana-
lyzed by comparing FIGS. 17(%) and 18(7). It can be observed
that a large portion of isolated pixels have been assigned
labels without having to be processed during region growing.
This results in a more efficient growth procedure where com-
putational costs are channelized to segmented meaningful
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regions of the image rather than working on small isolated
and insignificant regions that will visually not have any
impact or show up as distinct segments in the final segmen-
tation result.

Sequential Region Growing and Dynamic Seed Addition

The adaptive gradient thresholding method discussed
above generates dissimilar values of growth intervals for most
natural scene images. However, in the case of images with
less gradient detail or foreground content, a situation may
arise where identical thresholds are generated, causing the
region growth and seed addition procedure to be inefficient.
To overcome this problem, at the very beginning of the region
growth procedure, all the thresholds demarcating the growth
intervals are checked for similarity with one another. The
‘check’ is designed such that the growth procedure is per-
formed only if the two thresholds constituting the current
interval are different from each other, otherwise it is forcibly
existed and the processing of the next interval begins. This
adds an additional dimension to the MAPGSEG method, as
not only are the thresholds generated adaptively but also their
number may vary from image to image. Such a situation can
be viewed by the image in FIG. 19, shown below.

The ‘Bird’ image shown in FIG. 19 is an example of an
image with low gradient content and slowly varying back-
ground. This behavior can be observed by the shape of the
histogram which is primarily concentrated in the low gradient
regions, resulting in it being very narrow. This image is also
an example where the initial threshold is A=10 (first magenta
marker). The thresholds intervals generated for this image are
19, 19, 69, 69 and 69 shown as the two yellow markers in FIG.
19. If the region growth procedure is performed without the
aforementioned similarity check of the minimum and maxi-
mum limits of an interval, the method would go through three
iterations (one at 19 and twice at 69) of the region growing
without any contribution to the eventual segmentation result.
The incorporation of a threshold similarity check avoids this
problem and only one interval from 19 to 69 is used to grow
regions, thus increasing the flexibility of the method.

Once the updated parent seeds map after seed saturation is
obtained (FIG. 20(a)), the MAPGSEG method proceeds to
the growth procedure in a manner similar to the GS method,
by increasing the threshold to detect new areas, referred to as
child seeds, shown in FIG. 20(5). However, at this point, only
the child seeds that are adjacent to previously generated par-
ent seeds are classified. The adjacent child seeds are found by
obtaining the seeds that share pixels with parent seed borders.
In the GS algorithm parent seed borders are found using a
non-linear spatial filter that operates in a 3 by 3 neighborhood
such that, the output of the filter is zero if all elements in the
neighborhood are exclusively zero or non-zero, and gives a
nonzero output if the neighborhood elements are a mixture of
zero and non-zero values. However, the MAPGSEG adopts a
morphological method to acquire parent seed borders (FIG.
20(c)) with identical results to the GS algorithm, aforemen-
tioned in the discussion on seed saturation. Morphological
extraction of seed borders was found to be computationally
more efficient especially for large resolution images, in com-
parison to non-linear spatial filtering.

Having obtained the adjacent child seeds (FIG. 20(d)) uti-
lizing the parent seed borders map, the MSS criterion is now
employed to differentiate between child seeds that can
directly be merged with corresponding parents and those that
have to be further processed. Incorporation of the MSS crite-
rion at this point reduces the number of child seeds. The child
seeds greater than the MSS constraint are checked for lumi-
nance and chrominance (L*, a*, b*) similarity with their
parents. Parent-child similarity is evaluated by computing the
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distance between the mean L*, a* and b* values of PSs and

CSs, (mz., , M., My, Jand (M., M. My ) respec-

tively, in the Euclidean sﬁace (B>), defined as:

49)
_ J (1L, =iy )2 + (s, Mg, )2 +

AEpgs_css =
PSs—CSs . e
Mopgs ~Mbess

The combination of the CIE L*a*b* color space and the
Euclidean distance metric was employed because: 1) it
assures the comparison of colors is similar to the differentia-
tion of colors by the human eye, 2) the increased complexity
of a different distance metric, for example, the Mahalanobis
distance, does not improve the results, due to the small vari-
ance of the regions being compared, owing to their spatial
proximity. On the other hand the GS method employed the
Euclidean distance metric in the RGB color space which is
non-uniform in nature. Thus the Euclidean distance measure
in anon-uniform color space, employed earlier, was not a true
indication of similarity of between regions, resulting in the
GS algorithm yielding many oversegmented results. How-
ever the use of the CIE L*a*b* which is more uniform in
comparison to RGB, helped reducing the over segmentation
problem to a great extent. The maximum color distance to
allow the integration of a child seed to its parent was empiri-
cally chosen preferably to be 60 in the MAPGSEG method.
This value can be varied with a preferred range of 40 to 60.
However it should be noted that when the value of color
distance is lowered it implies a more stringent parent-child
similarity criterion and vice versa. The aforementioned value
of 60 was chosen based on the embodiment of the present
invention’s performance on 300 images. However, the pre-
ferred range may vary slightly when based upon a larger
number of images.

The dynamic seed addition portion of the region growth
procedure is responsible for the detection of new areas with
higher gradient densities, where each stage corresponds to a
different threshold validated by performing a similarity check
for the thresholds generated at the very beginning of the
growth procedure. The seeds added due to dynamic seed
addition process may include adjacent and non-adjacent
seeds, and obtained at varying size criterions (10*MSS;,,
5*MSS;, and a criterion equivalent to MSS; for all remaining
seed addition thresholds) in a manner similar to initial clus-
tering (shown in FIG. 20 (f)). Note that the multiplication
factors of 10, 5 and 1 have been arbitrarily set. Similar to the
size criteria for the initial clustering phase, these can be varied
depending on the complexity of the image. However in gen-
eral these multiplicative factors should be chosen in order
decreasing magnitudes for correspondingly increasing gradi-
ent ranges, to ensure proper region formation. Preferred
ranges are 10-20, 5-10 and 1-5 respectively determined based
on the embodiment of the present invention’s performance on
300 images. However, the preferred range may vary slightly
when based upon a larger number of images. The non-adja-
cent seeds that are larger than the corresponding seed size
criterion, based on the interval of operation, are added as
parent seeds to the current seed map and the all the adjacent
seeds are processed in the previously explained procedure.
The seed map obtained at the end of each interval of the region
growth and dynamic seed addition process, becomes the par-
ent seed map for the next interval, displayed in FIG. 20 (g).
The seed tracking method (employed in the GS method) is
employed in the growth procedure for growth rate feedback,
preventing seeds to overflow into regions of similar [.*a*b*
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values but different textures. When the last growth interval
has been reached, all the significantly identifiable regions
would have been given a label and all remaining unsegmented
areas are close to the edges of the segmented regions.

In case of natural scene images where gradient content can
dramatically vary, accomplishing region growth in the afore-
mentioned iterative procedure over the entire gamut of gra-
dient values present in these images can be computationally
intensive. To this effect, the totality of the growth procedure in
the proposed algorithm is restricted to a finite number of RGIs
which may span only a portion of the total gamut of gradient
values in an image, but sufficient enough to segment a large
portion of it. This limit on the number of RGIs was chosen
based on the average percentage of total segmented image
area at different resolution levels, determined utilizing 300
natural scene images provided by the University of California
at Berkeley. However, the preferred range may vary slightly
when based upon a larger number of images. We found that
with a growth factor (iAg defined in Section 2.3) varying from
10% to 50% obtained utilizing 1=i=5 and Ag=10%, on an
average more than 85% area of an image to be segmented, and
hence constrain the growth phase to preferably a maximum of
five RGIs (N=5). Furthermore, using the preferred range of
values for N from 3 to 7, with Ag varying from 5% to 30% it
was found that on an average more than 75% to 95% of the
image can be segmented in the region growth procedure with
varying computational requirements. This constraint on the
number of RGIs, results in a small portion of the image
largely including regions of color transitions in the periphery
of existing seeds being left unsegmented, at the conclusion of
the growth procedure (as mentioned earlier). These unseg-
mented regions are assigned labels in a procedure known as
residual region growth that involves local neighborhood-
based mode filtering and morphological dilation operations.
Mode filtering is a technique in which un-labeled pixel loca-
tions (i,j) surrounded by existing seeds in their respective
local 3x3 neighborhood (f), are assigned the most frequently
occurring label from amongst the non-zero elements of that
neighborhood (B,,.), using a non-linear spatial mode filter
(m,) defined as:

if mode 50
mode(fy,) f modetfe)
@ is unimodal
ms(i, j) = .
if mode(5,,)
pipemode(f) oo
is multimodal
where,

Plmy, ma): Blmy, my) >0,
Pz = m eli-1,i+1], X

my e [j-1, j+1]

In locations where the mode of 3,,. is not unique (multimo-
dal), a random label assignment ¢ from the acquired multiple
mode values is performed, as represented in Eq. (35). At this
stage the pixels that remain unsegmented are the ones whose
corresponding local neighborhoods do not constitute any of
the existing seeds. To this effect, an iterative morphological
label assignment is employed, where-in all existing seeds are
repeatedly dilated using a 3x3 structuring element ) (defined
previously) until there exists no unassigned pixels, to yield
the final region growth map. The aforementioned constraint
on the number of RGIs was chosen with the fundamental
objective to reduce the computational expense incurred in the
present invention. Thus, it should be noted that the region



US 8,515,171 B2

33

growth procedure can be employed to segment the entire
image (100%) without the need for the residual region growth
process. However segmenting the entire image using only the
region process was found to be computationally intensive
with small variations in the final results and thus the residual
region growth procedure was introduced.

Progressive Region Growing utilizing Distributed Dynamic
Seed Addition (DDSA)

In the region growth process discussed so far, there exists
an exclusive one-to-one relationship with the seed addition
procedure, which is the methodology adopted by the MAPG-
SEG method only at the smallest resolution in the image
pyramid (see red arrows in FIG. 16). However the true pro-
gressive and cost-effective nature of the growth procedure is
accentuated at subsequent higher resolutions where Distrib-
uted Dynamic Seed Addition takes place. The DDSA proce-
dure commences at (k—1)" level in a k level decomposition,
after the interim segmentation of the k” level is passed
through the seed transfer module (M4 in FIG. 16). The seed
transfer module is responsible for acquiring regions of high
confidence from the k™ level segmentation at the resolution of
the (k-1)" level.

The significance of the DDSA can be intuitively derived
from the images in FIG. 21. In FIGS. 21(a) and (4), shown is
the ‘Cars’ image and its corresponding gradient map at a
resolution of 161x241 (level k-1 where k=2). The image in
FIG. 21(a) is obtained by garnering all channel and size
information corresponding to the (k-1)” level, fusing them
together to give the Current Dyadic Scale (CDS) image, a
process previously described. Thus, no additional computa-
tional expenses are incurred in trying to acquire the CDS
image at the (k-1)* level. The MAPGSEG output at the
smallest resolution (81x121, level k where k=2) is shown in
FIG. 21(c¢). This is achieved after the output of Module 3
(region growing module) is combined with a texture map
(Module 4) in a statistical merging procedure (Module 5), as
represented in FIG. 16. The output of the seed transfer module
is shown in FIG. 21(d). The seeds in FIG. 21(d) represent all
regions of high confidence at the CDS which can directly be
incorporated from the interim segmentation of the previous
level (FIG. 21(c)), and can be considered as a-priori informa-
tion for processing at the current scale. The entire protocol
from the end of region growing to the segmentation output,
followed by seed transfer, is present in subsequent sections.

It can be observed that the a-priori information at the CDS,
shown in FIG. 21(d), includes seeds mostly in low gradient
regions. Due to this reason, initial clustering discussed earlier,
is not employed at the commencement of processing, at this
level. Moreover if the a-priori information is considered as
parent seeds for the current level, intuitively it can be
observed that all the growth intervals generated for this image
will not be required to segment the remaining regions using
the aforementioned region growing methodology, since these
unsegmented regions occupy a relatively smaller area in the
image. It is based on this intuitive notion the DDSA was
designed. The essence of the DDSA is to explore the possi-
bility of utilizing some or all of the adaptively generated
growth intervals directly for seed addition without having to
actually having to perform region growth. In other words the
aim is to identify the intervals that can be used for addition of
seeds by bypassing the region growth protocol and the ones in
which region growth is indispensible before any seed addition
can be performed. To this effect, where seed addition is done
in a dynamic and distributed framework, the procedure is
known as ‘Distributed Dynamic Seed Addition’.

Practically, this objective is achieved by a histogram analy-
sis of gradient information of the CDS image (FI1G. 21(b)) and
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the gradient values of all unsegmented regions that are
derived after padding the high confidence seeds in the CDS
gradient map (shown in FIG. 21(e)). In FIG. 22(a) shown are
the gradient histogram plots of FIG. 21(5) (blue curve) versus
the histogram of unpadded pixels in FIG. 21(e), along with
the generated threshold intervals, shown as magenta and yel-
low markers.

In FIG. 22(a) at each gradient value, the drop in number of
pixels indicated by the difference of a point on the blue curve
to its counterpart on the green curve corresponds to the num-
ber high confidence pixels possessing that gradient value.
Thus the shaded region in red signifies gradient values of all
high confidence pixels, and the gradient range of all a-priori
seeds are from zero to the point of intersection of the two
curves. Furthermore observe that the behavior of the two
curves is the same in the latter half of the histogram suggest-
ing that all strong gradient regions have remained unclassi-
fied. Since most pixels with low gradient values are already
assigned labels, performing the region growth procedure in
the low gradient threshold intervals is bound not to bring
about any significant change in the area covered by the exis-
tent seeds yielding extravagant computations with little con-
tribution towards the final segmentation result. Consequently,
the point of intersection of the two curves can be utilized as a
decision boundary for classifying intervals that will be of any
significance during region growth. The threshold intervals
below the intersection point were considered for seed addi-
tion without region growth and the intervals above the inter-
section point were subjected to the region growth procedure
followed by seed addition.

On the other hand, due to the diverse nature of natural
images this consideration can yield contrasting results, illus-
trated by FIGS. 22(5) and (¢) which are the zoomed versions
of'the histograms shown in FIG. 22(a). It can be seen that that
the curves do not intersect with each other until a gradient
value of 108 towards the end of the histogram (0% difference
line in FIG. 23(a)), is reached. In such a scenario utilizing the
exact intersection point as the decision boundary for classi-
fying seed addition thresholds prior to region growth, will
result in a large number of minute seeds, increasing the com-
putational overhead for region growing and merging. Thus
instead of searching for an exact intersecting point to classify
these threshold intervals, the search is for a decision threshold
confined to the interval ranging from a gradient value 0 to a
gradient value corresponding to 0.01% (preferred range of
0.001% to 0.1%) of the maximum difference value of the two
histogram curves as seen in FIG. 23(a). In addition the dif-
ference curve (a-priori information gradient histogram)
between the blue and green histogram curves is utilized to a
find a suitable decision boundary for classifying thresholds.
Note that the value of 0.01% of maximum difference is con-
sidered as a simulated point of intersection for the two curves.

The zero crossing point between the histogram curve ofthe
segmented (red) and unsegmented pixels (green), was chosen
to be a suitable threshold to distinguish among intervals
which can be used for seed addition with and without region
growing. To ensure that the correct decision threshold is being
used the consistency in zero-crossing was also checked, as
can be seen in FIG. 23(5). From FIG. 23(a) it can be seen that
the intersection point between the red and green curves
(shown as a black marker at a gradient value of 22) determines
the maximum range within which there is a significant change
in the number of pixels per gradient value, or the range of
gradient values which contain a large portion of a-priori
seeds, and is the ideal range that can be used for adding seeds
of' significant sizes without loss in visible gradient detail. For
images where this decision boundary (Decision boundary 1in
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FIG. 23(a)) yields no significant seeds, the threshold corre-
sponding to 0.01% of maximum difference is utilized to find
any significant seeds without merging discernible gradient
information (Decision boundary 2 in FIG. 23(a)), not used at
the current level for this image). All threshold intervals
beyond 0.01% of the maximum difference gradient value are
utilized in the previously mentioned sequential region growth
procedure. Observe that though the number of unsegmented
pixels in the intervals of high gradient is lesser in comparison
to ones in low gradient ranges, the gradual increment of seed
area due to region growth in the high gradient range is
required to be able to segment regions without merging edge
information, which is required in low gradient ranges.

The performance advantage of the DDSA can be seen in
FIG. 24. The region growth intervals for the ‘Cars’ image
constitute threshold values of 12, 15, 21, 36 and 54 (yellow
markers in FIG. 23(a)). The point of intersection of seg-
mented and unsegmented pixels, or the decision boundary for
classifying thresholds as mentioned previously was obtained
to be at a gradient value of 22. Therefore, for this image at
level 1 the thresholds suitable for seed addition without the
need for region growth were chosento be 12, 15 and 21, while
the intervals from 21-36 and 36-54 were chosen for region
growth. The agglomeration of seed generated at 12, 15, and
21 is shown FIG. 24(a). In this seed map it can be seen that all
seeds are of decent size and cover a significant portion of the
unsegmented image area in low gradient regions. On the other
hand observe that in FIG. 24(c) the seeds generated at all
growth intervals (12, 15, 21, 36 and 54) include a whole
number of minute seeds which in addition to the growth
process will hinder the performance of the region merging
module, also designed in an iterative format. Incidentally,
seeds of 24(a) are generated as a result of the controlled
decision making, and FIG. 24(c) would result if the decision
boundary was chosen to be the exact point of intersection of
the two curves. This illustrates the advantage of choosing
Decision boundary 1 over the exact point of intersection, as
the former is a good compromise between the regions that are
directly assigned labels and the ones that are grown, such that
the overall computational effort is minimal. FIGS. 24(b) and
(d) represent the seed map after the initial phase of seed
addition and prior to region growing, corresponding to FIGS.
24(a) and (c) respectively.

Clear advantages of the controlled threshold section for
progressive region growing can be seen by observing the
images presented in FIG. 25. In FIGS. 25 (a) and (b), shown
is the ‘Cars’ image and its corresponding gradient map at a
resolution of 321x481 (level k-2 where k=2). The MAPG-
SEG interim output at level 1 (161x241) is shown in FIG.
25(c). The a-priori information for the CDS is shown in FIG.
25(d). It can be observed that most areas of the image have
been assigned a region and the ones close to strong gradient
content are unassigned. Here again the previous discussed
histogram analysis is performed utilizing FIG. 25(5) and
unpadded areas of FIG. 25(e). A histogram comparison of the
two is portrayed in FIG. 26. As shown the histogram curve in
green reflects a gradient map in which most areas have
already been segmented which results in the decision crite-
rion (Decision boundary 1 at gradient value 60) to choose all
the growth intervals (12, 15, 21,36 and 54) only of pre-growth
seed addition. Thus for the CDS no region growth is per-
formed bringing about significant improvement in runtime of
the method, owing to the iterative nature of the growth pro-
cedure. The seed generated due to all growth intervals in the
unassigned regions are shown in FIG. 25(f). FIG. 25(g) rep-
resents the seed map after the pre-growth seed addition pro-
cess which is directly led to the merging module. Thus it can
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be seen that as the MAPGSEG method traverses from one
resolution to another, the region growth procedure is per-
formed in progressively increasing threshold intervals. In
addition, as the method navigates across resolutions, the
DDSA procedure is dispensed with more responsibility while
the growth procedure becomes discretionary, to the extent
that it may be completely bypassed as seen in the example of
the ‘Cars’ image. Moreover this controlled mechanism of
thresholding enables the method to work efficiently without a
seed tracking method, thus compensating for it at all dyadic
scales other than the smallest one.

TABLE 2

MAPGSEG THRESHOLD SELECTION FOR A TWO LEVEL
DECOMPOSITION (‘CARS’ IMAGE)

Thresholds/Intervals

Level (Resolution) 2 (81 x 121) 1(161x241) 0(321 x481)
Initial Clustering 5,10 None None
Pre-Growth None 12,15,21 12,15,21,
Seed Addition 36,54
Region Growth 12, 15,21, 36,54 36,54 None
Intervals

Post-Growth 12,15,21,36,54 36,54 None

Seed Addition

Table 2 summarizes the functionality of the adaptively
generated thresholds at various scales of the ‘Cars’ image.
The progressive nature of the region growth procedure can be
clearly observed in Table 2, where sequential growth takes
place at level 0 and in doing so employing all growth inter-
vals. At level 1 the growth procedure shift to the higher
gradient content and finally at the highest resolution is not
employed at all because of the absence of any significant
unsegmented pixels so as to take full advantage of region
growing. However for most images the MAPGSEG operates
in a threshold range that covers regions of significant area in
comparison to the image resolution, thus leaving all strong
gradient regions unsegmented, as shown FIG. 27.

In FIGS. 27 (a) and (b), the seed maps at the end of the
region growth procedure for level 1 and level 0 respectively,
are shown. It can be observed that high gradient or strong
edge regions are consistently unsegmented due to the previ-
ously mentioned reasons. Since strong gradient regions
occupy a very small area of the image these regions are
assigned with labels pre-existing in the seed map at the end of
the growth procedure. In order to achieve this objective with
minimal computational costs the MAPGSEG method per-
forms a combination of neighborhood and iterative morpho-
logical label assignment. Neighborhood label assignment is
the process by which unassigned pixels are assigned to the
label having the maximum count in its 3x3 neighborhood
using a non-linear spatial filtering technique discussed in the
seed transfer module subsection. The results of this procedure
are shown in FIGS. 27 (¢) and (d), corresponding to FIGS. 27
(a) and (b) respectively. However neighborhood label assign-
ment alone is not sufficient to label pixels encompassed by 0’s
(all zero neighborhoods). Thus the results of FIGS. 27(¢) and
(d) are subjected to iterative morphological label assignment,
where all seeds are dilated in an iterative fashion using a 3x3
a structuring element until there exists no unassigned pixel.
The result of this operation for level 1 and level 0 are shown
in FIGS. 27 (e) and (f). Thus at the end of morphological label
assignment all pixels in the image would have received a
label. This post region growth processing is much more com-
putationally efficient than method utilized in the GS algo-
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rithm where a major portion of the sequential growth proce-
dure is repeatedly carried out assigning each unsegmented
pixel to the most occurring parent in its neighborhood. In
addition since the region growth map of the GS method
comprises much larger number of segments than the MAPG-
SEG method, for most images, the computational costs
required to perform parent based label assignment was huge.
The region growth map before and after unassigned residual
pixel label assignment for the ‘Cars’ image using the GS
method is shown in FIGS. 27(g) and (/). In these two images
it is seen that the results of the region growth procedure
employed in the GS algorithm is much more over-segmented
than in case of the MAPGSEG where the output of the growth
procedure is close representation of the eventual segmenta-
tion. This is primarily due to the use of uniform L*a*b* and
a flexible and efficient adaptive threshold generation scheme.
Seed Transfer Using Gradient Quantization Based Confi-
dence Map

The seed transfer module can be deemed as an interface for
information transfer from one resolution to another in the
MAPGSEG method. This module (M4 as seen in FIGS. 5 and
16) is responsible for identifying transferable regions
between resolutions by exploiting the interim segmentation
outputs as a-priori information, and acquiring regions of high
confidence from the k” level segmentation at the resolution of
the (k—1)* level. A block diagram illustrating all constituents
requisite for multiresolution seed transfer is shown in FIG.
28. The interface functionality of the module can be observed
from the input/output relationship, where the input is at the k”
level and the processing culminates in the (k-1)” level, as
seen in FIG. 28.

This module is initiated by a seed map up conversion of the
k™ level segmentation to the resolution of the (k-1)" level.
This step is necessary to ensure that the data transferred is in
perfect alliance with the next higher resolution. To this effect,
we first up sample the interim segmentation at k” level by a
factor of two along each dimension thus transmuting it to the
subsequent higher dyadic resolution. The up conversion pro-
cess is a two step method including zero’s insertion followed
by neighborhood pixel assignment. Zero’s insertion involves
inserting zero’s between every pixel along both dimensions
such that an MxN scale is transmuted to a (2*M)x(2*N)
scale. In FIGS. 29 (a) and () the interim segmentations
acquired at level 2 and level 1, are respectively shown. The
results at resolutions of 81x121 and 161x241 when subjected
to zero insertion are transformed to resolutions 161x241
(level 1) and 321x481(level 0), displayed in FIGS. 29 (¢) and
(d). To overcome viewing limitations an encircled portion of
the result obtained after zero insertion has been zoomed in
and shown in FIG. 29 (g). Having obtained the zero inserted
images these are now subjected to neighborhood pixel assign-
ment utilizing neighborhood based mode filtering in a manner
described previously.

In addition this filter is applied only to the neighborhoods
whose center pixel is zero, which from the aforementioned
discussion is MxN numbered in a (2*M)x(2*N) scale image.
The result of the aforementioned non-linear spatial filtering
operation on the images presented in FIGS. 29 (¢), (d), is
shown in FIGS. 29 (e) and (f) respectively. These two images
represent the a-priori information for their corresponding
dyadic scales. In addition the a-priori information can be
considered to be the estimates of the segmentation output at
the current scale.

Gradient Quantization

Gradient quantization is required to determine the pixels in
the estimated seed map that are acceptable with high confi-
dence, and be passed on as a-priori information for an arbi-
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trary decomposition level. In general when an image is
decomposed to certain number of levels, flat regions can be
segmented with relative ease even at lowest scale in compari-
son to strong gradient regions. This is due to the fact they have
not undergone much change in gradient content, but it is just
their size that has decreased. However, in case of strong
gradient regions decomposition results in loss of information
content of these regions and so cannot be segmented with the
same ease as done on the full resolution image. The MAPG-
SEG method is designed to exploit this gradient characteristic
for facilitating seed transfer. Thus, the gradient map is quan-
tized at every dyadic scale to differentiate between high and
low confidence pixels at that scale. The gradient quantization
levels are chosen to be the adaptively generated threshold
intervals, obtained at the commencement of the MAPGSEG
method. The quantized gradient map combined with varying
size criterions (discussed later in the seed map cleaning pro-
cedure) is utilized to derive a-priori information at a certain
decomposition level.

A quantized gradient map utilizing the initial threshold
(A=5), growth intervals at (12, 15, 21, 34, 56), as well the
maximum gradient value in the histogram (111), is shown in
FIG. 30. Based on the previous discussion, for low scales (e.g.
level 1 for the ‘Cars’ image), pixels within low gradient quan-
tization levels (5,12) are chosen as potential high confidence
regions. When we move to the next higher scale (level 0),
higher quantization intervals (15, 21) including the ones uti-
lized in prior scales (5, 12) are chosen as confident a-priori
information. In addition since the number of decomposition
levels may not be equal to the number of quantization levels,
the increment in the number high confidence intervals is
varied depending on the number of decomposition levels,
such that, apart from strong gradient regions, most low gra-
dient regions shown up as a-priori information at the highest
scale. For the gradient confidence map with 7 quantization
levels shown in FIG. 30 the quantization levels are incre-
mented in steps of 2 so as to distribute low gradient intervals
evenly for levels 1 and level 0. (Note the level 2 the smallest
resolution has no a-priori information associated with it). In
FIG. 31(a) and (b) a logical map and corresponding labeled
color map portraying high confidence pixel locations
obtained at level 1 utilizing the two lowest quantization inter-
vals (5 and 12), are shown respectively. The labeled color map
was obtained after point wise multiplication of the estimated
segmentation map (FIG. 29(e)) and the logical map shown
(FIG. 31 (a)). Clearly, it can be observed that these quantiza-
tion intervals have covered signification image area. Since the
quantization intervals are low valued, the regions shown in
FIG. 31(b) can be deemed as information that can be passed
on to the processing at the current resolution with no loss in
gradient detail, thus reducing the computational requirements
for segmentation at the current level. However observe that
pixel based confidence results in numerous minute seeds
which are isolated as well as mutually adjacent to larger
existent seeds as shown in FIG. 31(c¢). These minute seeds
cannot be passed on as a-priori information as they would
result in high computation requirements. Due to this reason
they are eliminated from the labeled color map of high con-
fidence pixels, a process referred to as seed map cleaning.
Mutual Seed Border Regions (MSBR)

The removal of minute seeds cannot be done by connected
component analysis as it would only result in partial elimina-
tion of these seeds and simultaneously merge mutually adja-
cent ones, giving an undesired result. Therefore in order to be
able to efficiently clean up all isolated as well as mutually
adjacent seeds we proceed to determine the Mutual adjacent
Seed Border Regions (MSBR). MSBR is defined as all those
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pixels that are common to two regions that are labeled differ-
ently. These regions are obtained through non-linear spatial
filtering in the MAPGSEG method. The advantage of using
nonlinear spatial filters is that it gives information in the
image without actually manipulating individual pixel values.

Given a labeled seed map for facilitating the calculation of
MSBR first all pixel neighborhoods containing having mul-
tiple labels including O are identified. This is done by differ-
encing each pixel in a neighborhood from its adjacent value
and finding the total difference. If this value is 0 then all pixels
have the same value (in the neighborhood) else their labels
differ. Having obtained all such neighborhoods a validation
matrix (V) is generated, given by

51
y= Z (i, )= Vi, j)*mean(B) | ©b

G.)Ep

where f is the 3x3 neighborhood being operated and h is the
map comprising high confidence pixel locations. This valida-
tion matrix is required to segregate neighborhoods compris-
ing multiple labels but having unique nonzero labels and the
ones having multiple nonzero labels. Assume that V is being
computed in a unique nonzero neighborhood f. In such a
scenario the mean f§ of will be equivalent to the nonzero label
itself resulting in V for §§ being 0. Similarly for multiple
nonzero labels V>0 is obtain. Thus, in this particular example
MSBR is defined as

1 ifV>0

0 otherwise.

(52)
MSBR = {

The MSBR for the high confidence pixels map at level 1
(FIG. 32 (a)) is shown in FIG. 32 (4). This logical map
comprises 0’s and 1’s where a pixel having a value of 1
signifies that it is a part of an MSBR and vice versa.

Seed Map Cleaning and Border Refinement

The MSBR computation is followed by its elimination
from high confidence pixels map, resulting in all seeds being
independent, sharing no common border, as shown in FIG.
32(c). This map with all independent seeds is subjected to
connected component analysis to find all large seeds. A size
criterion is placed to achieve this objective, and is unique for
every scale. Starting from the (k—1)" level, the size criterions
for connected component analysis is varied as 10*MSS,,
5*MSS,;, and a criterion equivalent to MSS; (dynamic seed
addition size criterions) for all remaining scales, where each
scale corresponds to certain gradient quantization levels to
determine high confidence seeds. Note that the multiplication
factors of 10, 5 and 1 have been arbitrarily set. Similar to the
size criteria for the initial clustering as well as the progressive
region growth and distributed dynamic seed addition phase,
these can be varied depending on the complexity of the image.
However in general these multiplicative factors should be
chosen in order decreasing magnitudes for correspondingly
increasing gradient ranges, to ensure proper region forma-
tion. Preferred ranges are 10-20, 5-10 and 1-5 respectively
determined based on the embodiment of the present inven-
tion’s performance on 300 images. However, the preferred
range may vary slightly when based upon a larger number of
images. The result of employing connected component analy-
sis is shown in FIG. 32(d). From this figure it can be seen that
all minute isolated and adjacent seeds that were earlier part of
the seed map are no longer present. Although the aforemen-
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tioned seed map cleaning procedure help eliminating all
minute seeds, the large seeds that are present in the seed map
have borders that are coarse in nature, due to MSBR removal.

The border refinement procedure is responsible for finding
all MSBR that have labels present in the map including large
seeds, after subjecting it through the seed map cleaning pro-
tocol. These borders in turn are added back to large seeds map
(FIG. 32(d)) to acquire seeds with smoother borders. Border
refinement is a four step procedure. Initially all large seeds
borders are extracted morphologically, as discussed earlier
(shown in FIG. 32(e)). In addition all MSBR labels are
obtained by performing a point wise multiplication of the
MSBR map with the map including all high confidence pix-
els. (FIG. 32(a)). The resultant MSBR labels are shown in
FIG. 32(f). The labels in the FIG. 32 (f) that are adjacent
members of the large seeds (FIG. 32(d)) are obtained by a
point wise multiplication of large seed parent borders and
MSBR labels, and the result is presented in FIG. 32(g). These
labels adjacent to large seeds are now added to the large seeds
map to acquire smooth region borders, displayed in FIG.
32(h).

The border refinement procedure is the culmination point
of the seed transfer module (see FIG. 28). The map obtained
at the end of border refinement is considered to the a-priory
information for the current dyadic scale at which most seed
transfer processing is done. The following section will briefly
discuss Module 5 and Module 6.

Texture Channel Generation

In case of natural scene imagery, the segmentation task is
often hampered by the presence of regions/patterns com-
posed of multiple shades of colors or intensity variations due
to surface/material properties like density, gradient, coarse-
ness, directionality and the like. Such regions/patterns are
referred to as ‘textures’ and are broadly classified into struc-
tured and stochastic types, in the image understanding
domain. Structured textures are often man-made and have
regularity in their appearance, such as a brick wall, interwo-
ven fiber, etc., while stochastic textures are natural and are
completely random patterns, such as leopard skin, tree bark,
grass, etc. Due to the extensive presence of such patterns in
natural scene images the MAPGSEG algorithm has been
equipped with a texture characterization module (M5 in FIG.
5), which characterizes different textures at various scales, in
terms of the average information provided by intensity varia-
tions present in distinct image regions.

A fundamental principle in information theory is based on
the hypothesis that the presence of information can be mod-
eled as a probabilistic process, and that the amount of infor-
mation contained in a random event is inversely proportional
to the probability of the occurrence of that event. Thus, if {x;,
. ST xj} are a set of random gray levels present in an image,
and {P(x,), P(x,), . . . , P(x))} are the corresponding prob-
abilities of occurrences of each of these gray levels, an arbi-
trary gray level {x,} from the set is said to contain:

1 (53)
I(x;) = 10g2m = —log, P(x;)

binary units or bits of information when the base of the
logarithm is 2. Furthermore, for an image comprising of k
pixels, the law of large numbers states that a gray level {x,}
exists on average of kP(x,)times. Consequently, the total
information content (I) in these k pixels, whose intensity
values is modeled as a discrete random variable X, is given
by:
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I(X) = —kP(xlog, P(x;) — kP(x)log, P(x5) ... — (54)

kP(x;)log, P(x;)

J
= k)" PixplogP(x;)

i=1

Therefore, the average information content per pixel is given
by:

J (55)
H(X) == Pixlog,P(x;).
i=1

i

Apart from information content, the quantity H(X) also
symbolizes the degree of randomness present in the image,
and is popularly known as entropy. The entropy calculation in
Eq. (55) defined for a single random variable (single channel
gray image) can be extended to multiple random variables X,
Y, Z (three channel color image) by computing the joint
entropy, defined as:

HX Y. 2)==3" ' > P, v, 20)logy P, ¥ 26) 56)
i J k

However in order to achieve computational efficiency by
avoiding joint entropy calculation between channels, quanti-
zation is done by uniformly dividing the 8-bit encoded
L*a*b* cube into small boxes, and mapping all information
that fall within each box to the color and luminance value at
the center of that box (see FIG. 33). The advantage of quan-
tizing the L*a*b* cube over the RGB color cube is that, unlike
uniform L*a*b* data, if nonuniform RGB data is uniformly
quantized, a constant distance between and any two quanti-
zation levels will result in large variation of perceptual color
difference (Chou et al., “Embedding Color Watermarks in
Color Images,” EURASIP Journal on Applied Signal Pro-
cessing 2003(1): 32-40 (2003), which is hereby incorporated
by reference in its entirety). After the quantization process,
each pixel of an image can be indexed to one of the 216
representative levels, effectively reducing the probability of
each level occurring to a one-dimensional random variable.
Thetotal number of representative colors was arbitrarily set at
216. This parameter can be varied depending on the “color”
complexity of the image, which is the number of different
colors present in an image and its associated variations. How-
ever in general the number of quantization levels is chosen in
manner so as to approximately divide the 3-dimensional color
cube evenly. In the case of 216 representative colors, each
dimension of the color cube is quantized to 6 different colors/
levels. Similarly typical/preferred number of 125, 343, and
512 representative colors can be achieved by quantizing each
dimension of the color cube into 5, 7 and 8 different colors
respectively. To create a texture channel, the local entropy is
computed in a 9-by-9 neighborhood around each pixel of the
indexed image, and the resulting value is assigned to the
center pixel of the neighborhood. Other neighborhoods can
also be chosen with a preferred range varying from 5x5 to
13x13 for achieving optimal results. This model of texture is
then utilized in the region merging process.
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Region Merging

The progressive region growth procedure involving dis-
tributed dynamic seed addition, described in previously, was
performed primarily based on the similarity of L*a*b* data
between image regions. Consequently, the region growth map
obtained at the end of this procedure at an arbitrary scale, in
general comprises of over-segmented image regions due to
illumination variations, occlusions, texture disparities etc.
Thus, we employ a region merging module (M6 in FIG. 5)
that fuses color and texture information at different resolution
levels, to merge oversegmented regions as deemed necessary,
yielding interim segmentations at low resolutions, and the
final segmentation output at the highest resolution. However
in order to facilitate the aforementioned task, a multivariate
analysis of all independent regions utilizing their correspond-
ing L*, a*, b* and texture information, is carried out based on
the procedure described in the W. J. Krzanowski, Principles
of Multivariate Analysis. Oxford University Press, chapter 11
(1988), which is hereby incorporated by reference in its
entirety. The essence of this method is to investigate the
possibility that multiple groups/regions with various features
can be associated with a single factor that enables them to be
merged together.

As mentioned previously the region merging module is
integrated with the MANOVA procedure, to analyze data
associated with each group in the region growth map (gener-
ated previously), to produce output segmentations that are
spatially and spectrally coherent with the content of image
being segmented. Consequently, to facilitate the aforemen-
tioned MANOVA-based region merging methodology, at the
commencement of processing in this module, the L*, a*, b*
and texture data associated with each group in the region
growth map are vectorized and concatenated to matrix of
dimensions equivalent to the total number of pixels in the
image and number of variables (L*, a*, b*, texture) per pixel.
The result matrix is employed in the MANOVA procedure
involving the Mahalanobis distance (or similarity value) cal-
culation between all possible group pairs, to identify and
merge groups with similar characteristics.

The merging process is commenced by identifying the pair
of groups with the minimum Mahalanobis distance, signify-
ing the maximum similarity. However in order to reduce the
number of iterations of the merging protocol for computa-
tional efficiency, by avoiding the merging of only a single
group pair per iteration, the obtained distance value between
the two most similar groups is gradually increased until a
larger set of similar groups pairs (empirically set at five) are
obtained. Subsequently, the acquired group pairs are merged
with each other from the most similar group pair of the set, to
the least similar one, eventually concluding a single iteration
of'the merging process. Following this, the Mahalanobis dis-
tances is recomputed for the all possible group pairs com-
prised in the new segmentation map, and the process is
repeated until either a desired number of groups is achieved or
the smallest distance between groups is larger than a certain
threshold between two arbitrary groups. These termination
criterions ensure that that all images displayed a similar level
of segmentation, and were empirically chosen to be 40 and 4
respectively. However these could be varied depending on the
application for which this algorithm is being used as well as
image complexity, with preferred ranges being 30-60 and 2-4
respectively, for natural scene images.

The MAPGSEG results were benchmarked qualitatively
and quantitatively—using the Normalized Probabilistic Rand
index (NPR) (Unnikrishnan et al., “Toward Objective Evalu-
ation of image Segmentation Methods,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(6):929-944
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(2007), which is hereby incorporated by reference in its
entirety)—against several popular methods on the same test
bed of manually segmented images (ground truths). The
results were compared against those from a spectrum of pub-
lished segmentation methods such as GRF (Saber et al.,
“Fusion of Color and Edge Information for improved Seg-
mentation and Edge Linking,” Image and Vision Computing
15(10):769-780 (1997), which is hereby incorporated by ref-
erence in its entirety), JSEG (Deng et al., “Unsupervised
Segmentation of Color-Texture Regions in Images and
Video,” IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 23(8):800-810 (2001), which is hereby incorpo-
rated by reference in its entirety), DCGT (Balasubramanian et
al., “Unsupervised Color Image Segmentation by Dynamic
Color Gradient Thresholding” Proceedings of SPIE/IS&T
Electronic Imaging Symposium (2008); Garcia et al., “Auto-
matic Color Image Segmentation by Dynamic Region
Growth and Multimodal Merging of Color and Texture Infor-
mation”, International Conference on Acoustics, Speech and
Signal Processing, Las Vegas, Nev. (2008), which are hereby
incorporated by reference in their entirety), and a computa-
tional time analysis was also performed to furnish a fair
indication of the overall performance of the MAPGSEG
method. The NPR index requires a set of images each having
multiple manual segmentations, for evaluation. Such a set,
comprising 1633 manual segmentations for 300 images of
dimension~321x481, created by 30 human subjects, has been
made publicly available by the University of California at
Berkeley (Martin et al., “A Database of Human Segmented
Natural Images and Its Application to Evaluating Segmenta-
tion Methods and Measuring Ecological Statistics,” in /EEE
International Conference on Computer Vision Vol. 2:416-
423, Vancouver, BC, Canada (2001), which is hereby incor-
porated by reference in its entirety). An additional 445 images
with dimension~750x1200 were also utilized for accessing
the performance of the MPGSEG against its single scale
version. The entire testing database (745 images) was seg-
mented on the same machine having a Pentium® 4 CPU 3.20
GHz, and 3.00 GB of RAM. The GRF, DCGT and GS meth-
ods were run from the executable files and MATLAB code
provided by the Rochester Institute of Technology, while the
JSEG method was run from a different executable file pro-
vided by the University of California at Santa Barbara. The
proposed method was implemented using MATL.AB version
R2007a.

EXAMPLES
Example 1

The results of the MAPGSEG method for the ‘starfish’
image at different stages are presented in FIGS. 34(a)-34(e).
These results have been obtained using the following steps:
Step 1:

The input RGB image namely ‘starfish’ is first subjected to
processing in module 1. The processing in this module com-
mences in a color space conversion from RGB to CIEL *a*b*
in a manner described in Green et al., Color Engineering,
John Wiley and Sons Ltd. (2002), which is hereby incorpo-
rated by reference in its entirety, and using Egs. (27) to (29),
as described in [0224] and [0225].

Step 2:

Using the resultant [.*a*b*data, the magnitude of the gra-
dient of the full resolution color image field is calculated
using the procedure described in Lee et al., “Detecting
Boundaries in a Vector Field,” IEEE Transactions on Signal
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Processing 39(5):1181-1194 (1991), which is hereby incor-
porated by reference in its entirety.
Step 3:

Following this, using initialization thresholds of A=5 and
A+5=10, as well as number of RGIs N=5, with Ag=10% the
threshold values required for segmentation are determined
adaptively utilizing Eq. 45, as described in [0226] to [0234].
These values were obtained to be 12, 15, 21, 30, and 45 for the
aforementioned starfish image. The same thresholds were
utilized for segmenting the input image at all resolutions.
Step 4:

Having obtained the segmentation thresholds in step 3 the
full resolution RGB image is subjected to a dyadic wavelet
decomposition (module 2) using the Daubechies (9, 7) bior-
thogonal wavelet analysis coefficients, summarized in Table
1. The number of decomposition levels was determined using
the desired dimension D=128 as well as the image dimen-
sions 0f 321x481, in accordance with the procedure described
in [0235]. For this particular example 2-level decomposition
was performed.

Step 5:

Starting at the smallest resolution (=2 of dimensions
81x121), the initial clustering phase is performed using the
procedure described in [0237] to [0238]. Initialization thresh-
olds of A=5 and A+5=10, as well as a Minimum Seed Size
(MSS;_,) criterion of 3 pixels is utilized for this purpose to
eventually generate a Parent Seeds (PSs) map. As mentioned
in [0238] the size of the Parent seeds were restricted to
S0*MSS and 25*MSS for A=5 and A+5=10 respectively.
Consequently these criteria were obtained to be 150 and 75
pixels, respectively.

Step 6:

The resultant initial seeds map is subjected through a
region growth process (module 3) described in [0239] to
[0257]. This procedure facilitates the growth of the existent
parent seeds as well as the addition of new seeds in unseg-
mented regions at distinct stages of region processing. The
growth of existent parent seeds was done by merging of child
seeds to them using a color distance threshold of 60. In
addition the region size criteria for the five RGls, set at
10*MSS, 5*MSS, MSS, MSS and MSS, was obtained to be
30, 15, 3, 3 and 3 pixels, respectively.

Step 7:

Having completed the region growth process, a texture
information channel (module 5) was computed using the
procedure described in [0269] to [0271]. More specifically
the color converted image in the L.*a*b* color space was first
quantized to 216 different colors and the result indexed/quan-
tized map was employed in a local neighborhood based
entropy calculation using Eq. (55) in a 9x9 window around
every pixel in the image.

Step 8:

The acquired texture information, along with the [.*a*b*
information and the region growth map acquired in module 3,
are engaged in region merging procedure (module 6)
described in [0272] to [0274]. Furthermore this region merg-
ing process is based a statistical procedure known as the
Multivariate ANalysis Of Variance (MANOVA) described in
[0217]. In performing the aforementioned process the maxi-
mum similarity value for region merging was set at 4 while
the maximum number of groups in the output segmentation
(MaxNg) was set at 40.

Step 9:

The output of the region merging module yields an interim
segmentation map at the smallest resolution (=2 for this
example). This interim segmentation is subjected through a
multiresolution seed transfer process (module 4), described



US 8,515,171 B2

45

in [0258] to [0268], to identify seeds/regions transferable
from the current resolution (L=2) to the subsequent higher
resolution (L=1).

Step 10:

Having identified seeds transferable from the current reso-
Iution (IL=2) to the subsequent higher resolution (L=1),
excepting steps 3, 4 and 5 all the remaining steps (1,2, 6,7, 8,
9, and 10) are repeated for the image at resolution level L=1
of dimensions 161x241, to arrive at an interim segmentation
at resolution level L=1. The only parametric change for this
resolution level is that a Minimum Seed Size (MSS;_,) cri-
terion of 7 pixels is utilized for processing various steps.
Step 11:

Having obtained at interim segmentation at resolution level
L=1 and identified seeds transferable from the current reso-
Iution (L=1) to the subsequent higher resolution (L=0),
excepting steps 3, 4 and 5 all the remaining steps (1,2, 6,7, 8,
9, and 10) are repeated for the image at resolution level =0
of dimensions 321x481, to arrive at a final segmentation
result at resolution level L=0. The only parametric change for
this resolution level is that a Minimum Seed Size (MSS;_)
criterion of 15 pixels is utilized for processing various steps.

The input image pyramid (see FIG. 15) obtained after color
conversion to CIE L*a*b*, is shown in FIG. 34(a). The out-
come of gradient computation on the color converted input
images at various resolutions, is shown in FIG. 34(b). The
seed maps at the end of the region growth procedure, obtained
utilizing thresholds that are generated adaptively, are dis-
played in FIG. 34(c). Observe that these region growth maps
are oversegmented, due to reasons specified in Section IITE.
The texture channels generated (at various scales) using color
quantization and local entropy calculation are depicted in
FIG. 34(d). Finally, the interim and final segmentation maps
at the end of the region merging method are shown in FIG.
34(e).

In addition, FIG. 35 demonstrates the multiresolution seed
transfer procedure in the MAPGSEG frame work. The level 2
segmentation result of the ‘Star fish’ image and its up con-
verted version to level 1 are shown in FIGS. 35(a) and (b)
respectively. This up-converted seed map is the estimate of
the segmentation result at level 1. This estimate is passed
through the seed transfer module to give the a-priori informa-
tion for level 1, as shown in FIG. 35 (¢). Utilizing this a-priori
information the method arrives at an interim result at level 1
(shown in FIG. 35(d)). The aforementioned procedure is
repeated at level 0 as shown in FIGS. 35(e), (g2).

Clear performance advantages of the MAPGSEG method
can be viewed in FIGS. 34 and 35. In FIG. 34(b) the increase
in gradient detail from the lowest to the highest resolution is
visible, which supports selecting flat regions at low gradient
quantization levels and vice versa. As a result large flat
regions can be segmented at the lowest resolution, up scaled
to the size of the input image, and in turn be used for various
applications. The ability of the MAPGSEG method to fulfill
all these functionalities projects it as a potential performance
enhancement tool in any application it is used. In addition, it
can be observed that the seed maps obtained at end of the
region growth procedure improves with each higher scale to
the extent that at the highest resolution it is a close represen-
tation of the eventual segmentation. This signifies lesser work
to the region merging method at successive scales rendering
the method to be more computational efficient than its single
scale version (the Gradient Segmentation (GS) algorithm).

Example 2

Results obtained from the MAPGSEG method in compari-
son to the previously mentioned segmentation methods, are
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shown in FIGS. 36-40. The ‘Church’ image in FIG. 36(a)
represents a moderately complex image. Observed that in
FIGS. 36(b), (c), (d), (e) the GRF, JSEG, DCGT and GS
methods over segment this image (sky and dome regions) due
to illumination disparity seen in various regions. However,
the MAPGSEG in FIG. 36(f) method employs the CIE
L*a*b* color space where the L.* channel contains the lumi-
nance information in the image, incapacitates the illumina-
tion problem. These results have been obtained using the
following steps:

Step 1:

The input RGB image namely ‘Church’is first subjected to
processing in module 1. The processing in this module com-
mences in a color space conversion from RGB to CIEL *a*b*
in a manner described in Green et al., Color Engineering,
John Wiley and Sons Ltd. (2002), which is hereby incorpo-
rated by reference in its entirety, and using Egs. (27) to (29),
as described in [0224] and [0225].

Step 2:

Using the resultant [.*a*b*data, the magnitude of the gra-
dient of the full resolution color image field is calculated
using the procedure described in Lee et al., “Detecting
Boundaries in a Vector Field,” IEEE Transactions on Signal
Processing 39(5):1181-1194 (1991), which is hereby incor-
porated by reference in its entirety.

Step 3:

Following this, using initialization thresholds of A=10 and
A5=15, as well as number of RGIs N=5, with Ag=10% the
threshold values required for segmentation are determined
adaptively utilizing Eq. 45, as described in [0226] to [0234].
These values were obtained to be 17, 19, 25, 35, and 56 for the
aforementioned Church image. The same thresholds were
utilized for segmenting the input image at all resolutions.
Step 4:

Having obtained the segmentation thresholds in step 3 the
full resolution RGB image is subjected to a dyadic wavelet
decomposition (module 2) using the Daubechies (9, 7) bior-
thogonal wavelet analysis coefficients, summarized in Table
1. The number of decomposition levels was determined using
the desired dimension D=128 as well as the image dimen-
sions 0f 321x481, in accordance with the procedure described
in [0235]. For this particular example 2-level decomposition
was performed.

Step 5:

Starting at the smallest resolution (=2 of dimensions
81x121), the initial clustering phase is performed using the
procedure described in [0237] to [0238]. Initialization thresh-
olds of A=10 and A+5=15, as well as a Minimum Seed Size
(MSS;_,) criterion of 3 pixels is utilized for this purpose to
eventually generate a Parent Seeds (PSs) map. As mentioned
in [0238] the size of the Parent seeds were restricted to
S0*MSS and 25*MSS for A=5 and A+5=10 respectively.
Consequently these criteria were obtained to be 150 and 75
pixels, respectively.

Step 6:

The resultant initial seeds map is subjected through a
region growth process (module 3) described in [0239] to
[0257]. This procedure facilitates the growth of the existent
parent seeds as well as the addition of new seeds in unseg-
mented regions at distinct stages of region processing. The
growth of existent parent seeds was done by merging of child
seeds to them using a color distance threshold of 60. In
addition the region size criteria for the five RGls, set at
10*MSS, 5*MSS, MSS, MSS and MSS, was obtained to be
30, 15, 3, 3 and 3 pixels, respectively.
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Step 7:

Having completed the region growth process, a texture
information channel (module 5) was computed using the
procedure described in [0269] to [0271]. More specifically
the color converted image in the [.*a*b* color space was first
quantized to 216 different colors and the result indexed/quan-
tized map was employed in a local neighborhood based
entropy calculation using Eq. (55) in a 9x9 window around
every pixel in the image.

Step 8:

The acquired texture information, along with the L*a*b*
information and the region growth map acquired in module 3,
are engaged in region merging procedure (module 6)
described in [0272] to [0274]. Furthermore this region merg-
ing process is based a statistical procedure known as the
Multivariate ANalysis Of Variance (MANOVA) described in
[0217]. In performing the aforementioned process the maxi-
mum similarity value for region merging was set at 4 while
the maximum number of groups in the output segmentation
(MaxNg) was set at 40.

Step 9:

The output of the region merging module yields an interim
segmentation map at the smallest resolution (=2 for this
example). This interim segmentation is subjected through a
multiresolution seed transfer process (module 4), described
in [0258] to [0268], to identify seeds/regions transferable
from the current resolution (L=2) to the subsequent higher
resolution (L=1).

Step 10:

Having identified seeds transferable from the current reso-
Iution (IL=2) to the subsequent higher resolution (L=1),
excepting steps 3, 4 and 5 all the remaining steps (1,2, 6,7, 8,
9, and 10) are repeated for the image at resolution level L=1
of dimensions 161x241, to arrive at an interim segmentation
at resolution level L=1. The only parametric change for this
resolution level is that a Minimum Seed Size (MSS;_,) cri-
terion of 7 pixels is utilized for processing various steps.
Step 11:

Having obtained at interim segmentation at resolution level
L=1 and identified seeds transferable from the current reso-
Iution (L=1) to the subsequent higher resolution (L=0),
excepting steps 3, 4 and 5 all the remaining steps (1,2, 6,7, 8,
9, and 10) are repeated for the image at resolution level =0
of dimensions 321x481, to arrive at a final segmentation
result at resolution level L=0. The only parametric change for
this resolution level is that a Minimum Seed Size (MSS;_)
criterion of 15 pixels is utilized for processing various steps.

Example 3

Similar results can be seen in the ‘Parachute’ image. All
methods apart from the MAPSEG algorithm, over segment
the sky and mountain regions, as seen in FIGS. 37(5), (¢), (d),
and (e). The MAPSEG results in FIG. 37(f) have been
obtained using the following steps:

Step 1:

The input RGB image namely ‘Parachute’ is first subjected
to processing in module 1. The processing in this module
commences in a color space conversion from RGB to
CIEL*a*b* in a manner described in Green et al., Color
Engineering, John Wiley and Sons Ltd. (2002), which is
hereby incorporated by reference in its entirety, and using
Egs. (27) to (29), as described in [0224] and [0225].

Step 2:

Using the resultant [.*a*b*data, the magnitude of the gra-
dient of the full resolution color image field is calculated
using the procedure described in Lee et al., “Detecting
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Boundaries in a Vector Field,” IEEE Transactions on Signal
Processing 39(5):1181-1194 (1991), which is hereby incor-
porated by reference in its entirety.
Step 3:

Following this, using initialization thresholds of A=10 and
A5=15, as well as number of RGIs N=5, with Ag=10% the
threshold values required for segmentation are determined
adaptively utilizing Eq. 45, as described in [0226] to [0234].
These values were obtained to be 18, 24, 45, 64, and 87 for the
aforementioned Parachute image. The same thresholds were
utilized for segmenting the input image at all resolutions.
Step 4:

Having obtained the segmentation thresholds in step 3 the
full resolution RGB image is subjected to a dyadic wavelet
decomposition (module 2) using the Daubechies (9, 7) bior-
thogonal wavelet analysis coefficients, summarized in Table
1. The number of decomposition levels was determined using
the desired dimension D=128 as well as the image dimen-
sions 0f 321x481, in accordance with the procedure described
in [0235]. For this particular example 2-level decomposition
was performed.

Step 5:

Starting at the smallest resolution (=2 of dimensions
81x121), the initial clustering phase is performed using the
procedure described in [0237] to [0238]. Initialization thresh-
olds of A=10 and A+5=15, as well as a Minimum Seed Size
(MSS;_,) criterion of 3 pixels is utilized for this purpose to
eventually generate a Parent Seeds (PSs) map. As mentioned
in [0238] the size of the Parent seeds were restricted to
S0*MSS and 25*MSS for A=5 and A+5=10 respectively.
Consequently these criteria were obtained to be 150 and 75
pixels, respectively.

Step 6:

The resultant initial seeds map is subjected through a
region growth process (module 3) described in [0239] to
[0257]. This procedure facilitates the growth of the existent
parent seeds as well as the addition of new seeds in unseg-
mented regions at distinct stages of region processing. The
growth of existent parent seeds was done by merging of child
seeds to them using a color distance threshold of 60. In
addition the region size criteria for the five RGls, set at
10*MSS, 5*MSS, MSS, MSS and MSS, was obtained to be
30, 15, 3, 3 and 3 pixels, respectively.

Step 7:

Having completed the region growth process, a texture
information channel (module 5) was computed using the
procedure described in [0269] to [0271]. More specifically
the color converted image in the L.*a*b* color space was first
quantized to 216 different colors and the result indexed/quan-
tized map was employed in a local neighborhood based
entropy calculation using Eq. (55) in a 9x9 window around
every pixel in the image.

Step 8:

The acquired texture information, along with the [.*a*b*
information and the region growth map acquired in module 3,
are engaged in region merging procedure (module 6)
described in [0272] to [0274]. Furthermore this region merg-
ing process is based a statistical procedure known as the
Multivariate ANalysis Of Variance (MANOVA) described in
[0217]. In performing the aforementioned process the maxi-
mum similarity value for region merging was set at 4 while
the maximum number of groups in the output segmentation
(MaxNg) was set at 40.

Step 9:

The output of the region merging module yields an interim
segmentation map at the smallest resolution (=2 for this
example). This interim segmentation is subjected through a
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multiresolution seed transfer process (module 4), described
in [0258] to [0268], to identify seeds/regions transferable
from the current resolution (L=2) to the subsequent higher
resolution (L=1).

Step 10:

Having identified seeds transferable from the current reso-
Iution (IL=2) to the subsequent higher resolution (L=1),
excepting steps 3, 4 and 5 all the remaining steps (1,2, 6,7, 8,
9, and 10) are repeated for the image at resolution level L=1
of dimensions 161x241, to arrive at an interim segmentation
at resolution level L=1. The only parametric change for this
resolution level is that a Minimum Seed Size (MSS;_,) cri-
terion of 7 pixels is utilized for processing various steps.
Step 11:

Having obtained at interim segmentation at resolution level
L=1 and identified seeds transferable from the current reso-
Iution (L=1) to the subsequent higher resolution (L=0),
excepting steps 3, 4 and 5 all the remaining steps (1,2, 6,7, 8,
9, and 10) are repeated for the image at resolution level =0
of dimensions 321x481, to arrive at a final segmentation
result at resolution level L=0. The only parametric change for
this resolution level is that a Minimum Seed Size (MSS;_)
criterion of 15 pixels is utilized for processing various steps.

Segmenting textured regions becomes a challenge when
regions with diverse textures are extremely similar in color.
Here a good texture descriptor is indispensible. FIG. 38(a)
represents an image of a Cheetah which has a skin tone that
almost matches its background making it extremely difficult
to segment it based on just color information. The GREF,
JSEG, DCGT results shown in FIGS. 38(5), (¢) and (d) illus-
trates the effect of an indistinct texture descriptor for segmen-
tation. The GS (FIG. 38(e)) method in comparison has been
able to achieve a good segmentation. However, the use of the
RGB space for color similarity has yielded incoherence in the
segmentation of the background. This problem has been over-
come in the MAPGSEG due to the use of the L*a*b* color
space, shown in FIG. 38(f). The same anomalies spotted in the
parachute and cheetah image can be seen in FIG. 39. Observe
in FIGS. 39 (), (¢), and (e) that lake region is segmented into
two regions due to illumination variation. In addition the
DCGT method merged the tree bark region due to lack of a
proper texture descriptor. Here again, the MAPGSEG is suc-
cessful in overcoming illumination and color space non-uni-
formity problems. This method like the GS has the ability to
segment fine details such as text with great efficiency unlike
the GRF, JSEG, and DCGT as illustrated by the results in FIG.
40. Observe that the word ‘Castrol” as seen in FIG. 40(a) is
segmented out at multiple locations with near perfection by
the MAPGSEG method as seen in FIG. 40(f). The GRF, ISEG
and GS cause over segmentation in regions representing the
motorway due to varying illumination and occlusion by the
foreground objects, as see in FIGS. 40(b), (¢), and (d). Thus,
the efficiency of the MAPGSEG method in handling the
background occlusion problem is emphasized in the ‘Cars’
results.

In the following figures, shown are the interim and final
segmentation outputs of this method in comparison to the
DCGT, GS and human segmentations provided by the Uni-
versity of California at Berkeley. In FIG. 41(5), (¢) the results
of the DCGT and GS from the ‘Island’ image have been
oversegmented in the lake region due to illumination varia-
tion. Conversely the MAPGSEG is able to segment this
region as one, even at the smallest resolution (see FIG. 41(f).
It is noted that the segmentations at lower resolutions other
than the original are being displayed after up scaling them to
the size of the original input utilizing the up scaling method-
ology in Section IIID.
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In addition the human segmentations for the island image
are shown in FIG. 42. The closeness of the segmentation can
be observed at all levels of the MAPGSEG to the human
segmentations. This signifies the methods effectiveness and
its robustness to scalability.

In FIG. 43 the “Asian’ image is portrayed. The DCGT fails
on this image due the lack of a texture descriptor. Though this
problem is overcome in the GS, it can be observed that the
back ground is oversegmented which is not a favorable result
when compared to the human segmentations shown in FIG.
44. However the MAPGSEG has been successful in segment-
ing the background as one region to a large extent as can be
seen in FIG. 43 (f) when compared to the images in FIG. 44.
In addition the level of detail in FIG. 43 (f) can be observed to
be similar to most of the human segmented image unlike the
GS method which over segments the robes of the two people
and in one case merges the hand of the person with the
background. Furthermore, the closeness of level 1 and level 0
results can be observed, signifying faster processing time for
segmentation. FIGS. 45 and 46 demonstrate the method’s
performance on higher resolution images (768x1024 and
768x1020 respectively). To this effect the MAPGSEG is sub-
jected to a 3 level decomposition resulting in three interim
and one final segmentation output as seen the ‘Tree’ image
results, in FIGS. 45 (¢), (d), (e), and (f). Here the interim
segmentation outputs have been showed without any up scal-
ing. In the aforementioned images the increase in level of
detail can be observed moving from one resolution to another.
On the other hand in the output of the GS method (shown in
FIG. 45 (b)) over segments the image in the grass region and
road region. Since there is not much illumination variation in
the areas of over segmentation this undesired result can be due
to the static thresholding methodology employed by the GS.
Similar observations can be made for the ‘Road’ image in
FIG. 46 where near uniform illumination condition of the
road is seen, but has been oversegmented by the GS which is
unlike the MAPGSEG.

In the NPR evaluation, the normalization factor was com-
puted by evaluating the Probabilistic Rand (PR) for all avail-
able manual segmentations, and the expected index (E [PR])
obtained was 0.6064. A distributional comparison of this
evaluation, ofthe segmentation results for 300 images (of size
321x481) in the Berkeley database, obtained from the GRF,
JSEG, DCGT, GS and MAPGSEG is displayed in FIG. 47. In
FIG. 47 (a), it can be observed that the distribution for the
GRF is weighted more towards the lower half of the distribu-
tion with a minimal NPR value going as low -0.9. A similar
observation can made with the NPR distribution of the DCGT
method in FIG. 47 (¢). An improvement over the previous two
methods is the JSEG in FIG. 47 (b) were the values are
weighted more towards the higher end of NPR score distri-
bution. More favorable NPR scores can be observed in the
case of the GS and MAPGSEG in FIGS. 47 (d) and (e).

The actual improvement can be seen by superimposing all
these distributions (as seen in FIG. 47 (f)), and observing the
number of segmentation scores that fall within the range of
very good segmentation results [0.7<NPR<1]. These num-
bers for the GRF, JSEG, DCGT, GS, and MAPGSEG were
computed as 38, 65, 62, 79 and 85 respectively (see Table 3).
This indicates that approximately a third of the images seg-
mented using this method match closely to the segmentations
performed by humans.
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TABLE 3

EVALUATION OF MAPGSEG USING 300
IMAGES OF THE BERKELEY DATABASE
IN COMPARISON TO PUBLISHED WORK

GRF JSEG DCGT GS MAPGSEG
Avg. Time 280.0 16.2 86.9 351 11.1
(sec)
Avg. NPR 0.357  0.439 0.375 0.487 0.495
NPR >0.7 38 65 62 79 85
Environment C C MATLAB MATLAB MATLAB

TABLE 4

EVALUATION OF VARIOUS LEVELS OF MAPGSEG USING 300
IMAGES OF THE BERKELEY DATABASE

Level 2 Level 1 Level 0
Avg. Time (sec) 11.1 4.6 2.3
Avg. NPR 0.487 0.495 0.496
NPR current 98.09% 99.7% 100%
level
Vs NPR Level 0
TABLE 5

EVALUATION OF VARIOUS LEVELS OF MAPGSEG USING
445 TARGE RESOLUTION IMAGES IN COMPARISON TO GS

Level 3 Level2 Levell LevelO GS

Avg. Time (sec) 35.7 19.6 11.2 8.7 177.2

A comparison of the evaluation, for the segmentation
results obtained from the five methods, is displayed in Table
3. This table shows that the method in accordance with
embodiments of the present application has the highest aver-
age NPR score, and the lowest average run time per image,
showing that this method is achieving quality segmentations
with the least computational complexity, considering the dif-
ferent environments in which they were developed. Table 4
exhibits qualitative and quantitative comparison of various
levels of the MAPGSEG, after all interim outputs were up
scaled to the size of original input. Comparing the average
level 2 NPR score to that that oflevel 1 even atlevel 2 it is seen
that the outputs obtained are more than 98% of segmentation
quality at the highest level (level 0), and acquired as fastas 2.3
seconds an image. Further more from Table 3 and 4 it can be
seen that the MAPGSEG is three times faster than the GS with
marginal improvement in segmentation quality. Table 5
shows the computational time comparison of various levels of
the MAPGSEG to the GS for 445 large resolution images
(~750x1200). Here it is seen that the GS has an average
runtime in minutes (177.2 sec~=2.9 minutes) in comparison
to this method with an overall runtime of 35.7 seconds, almost
5 times faster than its single scale version. In FIGS. 48(a-d)
graphical representations of the computational efficiency of
the MAPGSEG in comparison to other methods are shown.

The present invention provides a computationally efficient
method designed for fast unsupervised segmentation of color
images with varied complexities in a multiresolution frame-
work. This Multiresolution Adaptive and Progressive Gradi-
ent-based color image SEGmentation (MAPGSEG) method
is primarily based on adaptive gradient thresholding, progres-
sive region growth involving distributed dynamic seed addi-
tion, multiresolution seed transfer and culminates in a unique
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region merging procedure. The method has been tested on a
large database of images including the publicly available
Berkeley database, and the quality of results show that this
method is robust to various image scenarios at different scales
and is superior to the results obtained on the same image when
segmented by other methods, as can been seen in the results
displayed.

Having thus described the basic concept of the invention, it
will be rather apparent to those skilled in the art that the
foregoing detailed disclosure is intended to be presented by
way of example only, and is not limiting. Various alterations,
improvements, and modifications will occur and are intended
to those skilled in the art, though not expressly stated herein.
These alterations, improvements, and modifications are
intended to be suggested hereby, and are within the spirit and
scope of the invention. Additionally, the recited order of pro-
cessing elements or sequences, or the use of numbers, letters,
or other designations therefor, is not intended to limit the
claimed processes to any order except as may be specified in
the claims. Accordingly, the invention is limited only by the
following claims and equivalents thereto.

What is claimed is:

1. A method for image segmentation, the method compris-
ing:

performing by an image processing computing device a

dyadic wavelet decomposition of an input image with
automatic determination of a number of decomposition
levels;
adaptively generating by the image processing computing
device gradient thresholds for initial clustering and
region processing at different resolution levels of the
input image from a gradient histogram obtained from the
performed dyadic wavelet decomposition;

implementing by the image processing computing device
progressively thresholded multi-resolution region
growth on the initial clustering and dyadic wavelet
decomposition of the input image;

identifying by the image processing computing device

transferable regions for multi-resolution information
transfer, based on the implemented progressively
thresholded multi-resolution region growth and a histo-
gram analysis of gradient information; and

merging by the image processing computing device the

identified regions to provide interim results at arbitrary
low resolution levels and a final segmentation map at a
dyadic scale equal to that of the input image.

2. The method as set forth in claim 1 further comprising
converting by the image processing computing device the
input image from RGB to CIE L*a*b* before the adaptively
generating thresholds.

3. The method as set forth in claim 1 wherein the adaptively
generating gradient thresholds further comprises:

determining by the image processing computing device a

vector gradient calculation on the input image to gener-
ate a resultant edge map; and

using by the image processing computing device the result-

ant edge map to adaptively generate the gradient thresh-
olds for the initial clustering and the region processing at
different resolution levels, of the input image.

4. The method as set forth in claim 1 wherein the perform-
ing the dyadic wavelet decomposition of the input image
further comprises classifying by the image processing com-
puting device regions of varying gradient densities at differ-
ent levels.

5. The method as set forth in claim 1 wherein the imple-
menting progressively thresholded multi-resolution region
growth utilizes distributed dynamic seed addition.
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6. The method as set forth in claim 1 further comprising
performing by the image processing computing device tex-
ture modeling on the initial clustering and dyadic wavelet
decomposition of the input image, the merging is further
based on the texture modeling.

7. A non-transitory computer readable medium having
stored thereon instructions for image segmentation compris-
ing machine executable code which when executed by at least
one processor, causes the processor to perform steps compris-
ing:

performing a dyadic wavelet decomposition of an input

image with automatic determination of number of
decomposition levels;

adaptively generating gradient thresholds for initial clus-

tering and region processing at different resolution lev-
els of the input image from a gradient histogram
obtained from the performed dyadic wavelet decompo-
sition;

implementing progressively thresholded multi-resolution

region growth on the initial clustering and dyadic wave-
let decomposition of the input image;

identifying transferable regions for multi-resolution infor-

mation transfer, based on the implemented progres-
sively thresholded multi-resolution region growth and a
histogram analysis of gradient information; and
merging the identified regions to provide interim results at
arbitrary low resolution levels and a final segmentation
map at a dyadic scale equal to that of the input image.

8. The medium as set forth in claim 7 further comprising
converting the input image from RGB to CIE L*a*b* before
the adaptively generating thresholds.

9. The medium as set forth in claim 7 wherein the adap-
tively generating gradient thresholds further comprises:

determining a vector gradient calculation on the input

image to generate a resultant edge map; and

using the resultant edge map to adaptively generate the

gradient thresholds for the initial clustering and the
region processing at different resolution levels, of the
input image.

10. The medium as set forth in claim 7 wherein the per-
forming the dyadic wavelet decomposition of the input image
further comprises classitying regions of varying gradient den-
sities at different levels.

11. The medium as set forth in claim 7 wherein the imple-
menting progressively thresholded multi-resolution region
growth utilizes distributed dynamic seed addition.

12. The medium as set forth in claim 7 further comprising
performing texture modeling on the initial clustering and
dyadic wavelet decomposition of the input image, the merg-
ing is further based on the texture modeling.

13. An image processing computing apparatus comprising
a memory coupled to a processor configured to execute pro-
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grammed instructions stored in the memory including
instructions for implementing:

performing a dyadic wavelet decomposition of an input

image with automatic determination of number of
decomposition levels;

adaptively generating gradient thresholds for initial clus-

tering and region processing at different resolution lev-
els of the input image from a gradient histogram
obtained from the performed dyadic wavelet decompo-
sition;

implementing progressively thresholded multi-resolution

region growth on the initial clustering and dyadic wave-
let decomposition of the input image;

identifying transferable regions for multi-resolution infor-

mation transfer, based on the implemented progres-
sively thresholded multi-resolution region growth and a
histogram analysis of gradient information; and
merging the identified regions to provide interim results at
arbitrary low resolution levels and a final segmentation
map at a dyadic scale equal to that of the input image.

14. The apparatus as set forth in claim 13 wherein the
processor is further configured to execute programmed
instructions stored in the memory further comprising convert-
ing the input image from RGB to CIE L*a*b* before the
adaptively generating thresholds.

15. The apparatus as set forth in claim 13 wherein the
processor is further configured to execute programmed
instructions stored in the memory for the adaptively generat-
ing gradient thresholds further comprises:

determining a vector gradient calculation on the input

image to generate a resultant edge map; and

using the resultant edge map to adaptively generate the

gradient thresholds for the initial clustering and the
region processing at different resolution levels, of the
input image.

16. The apparatus as set forth in claim 13 wherein the
processor is further configured to execute programmed
instructions stored in the memory for the performing the
dyadic wavelet decomposition of the input image further
comprises classifying regions of varying gradient densities at
different levels.

17. The apparatus as set forth in claim 13 wherein the
implementing progressively thresholded multi-resolution
region growth utilizes distributed dynamic seed addition.

18. The apparatus as set forth in claim 13 wherein the
processor is further configured to execute programmed
instructions stored in the memory further comprising per-
forming texture modeling on the initial clustering and dyadic
wavelet decomposition of the input image, the merging is
further based on the texture modeling.
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