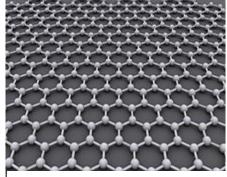
Technology Commercialization Opportunity

Production of graphene, graphene oxide, graphene metal composites and coatings

Background and Technology Description

LICENSES

Graphene is considered a wonder material and is among the highest in both electrical and thermal conductivity; additionally it is exceptionally strong. It is viewed as a material that can revolutionize the electronic industry as it approaches quantum computing. Graphene's unique properties are not limited to just electronics as new technological applications are being discovered.


Currently graphene can be synthesized by at least ten different This new innovation at Rochester Institute of methods. Technology (RIT) is an efficient method of producing graphene

that has several advantages, some of which make it a less expensive and more consistent.

GRAPHENE MATERIAI

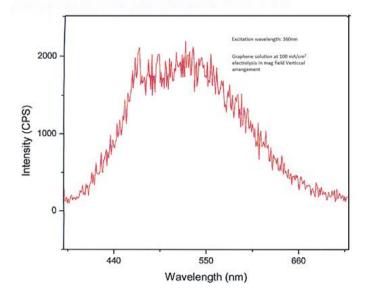
Thermal Conductivity 5000-5500 W m-2k-1 Young's Modulus 1100 GPa Specific Surface Area $2630 \text{ m}^2/\text{g}$ 125 GPa Fracture strength Electronic mobility >15000 cm²V⁻¹s⁻¹ Tensile strength 130 GPa Mobility 40,000 cm²V⁻¹s⁻¹ Resistivity 1.0 µohm-cm

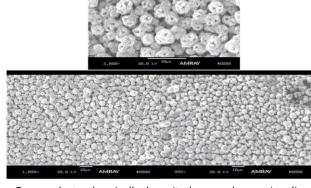
General Properties of Graphene

One atomic layer network of carbon atoms, en.wikipedia.org

Ever since the discovery of graphene was made public, there have been innumerable technological attempts at making this wonder material, both chemical and physical. The chemical methods can be either chemical vapor deposition (CVD) of graphene or

preparation of graphene graphene oxide in colloidal suspension. A physical method involves the use of a high power laser to cleave the graphite to a single layer. There are several steps involved in both the


methods which require additional purification steps of the material Our new technology involves simultaneous during production. production of graphene/graphene oxide in a colloidal suspension and a coating of it on an electrically conducting substrate. The coated substrate can also be pure graphene. The colloidal suspension can be



Graphene solution ready to be used

used directly for coating metal or non-metal substrates; by varying the conditions of productions metal-graphene composites can be produced.

Keywords: Preparation of graphene compounds, Pool boiling applications, Electronics industry, Coating metals for corrosion protection, Optoelectronic industries, Structural material

Copper electrochemically deposited on graphene using dip coated graphene

Graphene deposited on copper metal

Fluorescence spectrum of the solution.

Technology Readiness

The currently available technology is based on laboratory scale experiments that provide small volumes of graphene solutions. Scalability seems highly feasible.

Idea Concep	Prototype	Alpha Version	Beta Version	Released
--------------------	-----------	---------------	--------------	----------

Intellectual Property

This technology is the subject of a pending RIT patent application.

Target Customers/Applications

Quantum dots, electronic interconnects, structural materials, coating of substrates

Opportunity

RIT's Intellectual Property Management Office (IPMO) is interested in working with qualified parties who are interested in the commercialization of this automated system.

Contact

Those interested in learning more about this opportunity should contact: **Mr. William E. Bond**, Director of Intellectual Property Management at RIT (585) 475-2986 bill.bond@rit.edu

Please refer to ID 2014-020

