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Abstract— Autonomous vehicles are often tasked to explore

unseen environments, aiming to acquire and understand large

amounts of visual image data and other sensory information. In

such scenarios, remote sensing data may be available a priori,
and can help to plan and execute an autonomous mission. In

this paper, we propose a multi-modality learning algorithm

to model the relationship between visual images taken by an

Autonomous Underwater Vehicle (AUV) during a survey, and

remotely sensed acoustic bathymetry (ocean depth) data that

are available prior to the survey. The algorithm is based on

a mixture of Restricted Boltzmann Machines, and models the

joint distribution between the bathymetry and visual modalities.

The model is able to cluster the input data, generate useful

features for classification, and predict visual image features

in unseen dive sites from just the ocean depth information,

facilitating image-based queries. These capabilities are useful

in planning future AUV dives in unseen environments.

I. INTRODUCTION

Autonomous robots are often deployed to explore and
gather information about the world around them, through
cameras and other sensing means. Remotely sensed data
can provide useful a priori information about a robot’s
surroundings, and help to make informed decisions about
where to go and what tasks to perform.

In the case of Autonomous Underwater Vehicles (AUVs),
it is particularly important to consider remotely sensed data
from shipborne multibeam SONAR, because AUV dives
can only cover a very small fraction of the ocean floor.
Specifically, modelling the relationship between bathymetry
(ocean depth) data and in-situ visual images allows the AUV
to (1) better classify bathymetric data; and (2) predict what
kinds of visual features might be observed in unseen areas.
The former capability allows the AUV to plan exploration
missions to find certain habitats (e.g. “find kelp”), while the
latter enables image-based queries (e.g. “explore areas that
are likely to look similar to this image”).

One important consideration for this application is that
bathymetry is a much coarser sensor modality: a single ‘type’
of feature may correspond to many ‘types’ of visual features.
More specifically, the conditional distribution of visual fea-
tures given bathymetric features may be highly multimodal.
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In order to predict visual features from bathymetric data,
a generative model must be able to select a mode in a
principled manner.

In this paper, we propose an approach based on gated
feature learning models, which we argue is better equipped
to handle the ‘one-to-many’ relationship between the two
modalities. The gated model is equivalent to a mixture
of Restricted Boltzmann Machines [1], in which the joint
distribution over both modalities is conditioned on a latent
indicator variable. This effectively learns multiple Restricted
Boltzmann Machine (RBM) components under the same
framework, with the indicator variable switching between
them on the fly. We propose heuristics to avoid having to
specify the number of components. We also present tech-
niques to perform inference when only bathymetry is avail-
able, to predict visual features and determine the bathymetry-
only mixture probabilities.

Our results with a toy dataset suggest that the model can
better capture the conditional distribution of one modality
given the other. Experiments with real bathymetry and AUV-
based images show that the model can find meaningful
clusters from both a visual and bathymetric perspective, and
demonstrate the ability to query by image.

The remainder of this paper is structured as follows:
Section II summarises related work in underwater classifi-
cation and multi-modality learning; Section III describes the
proposed algorithm; Section IV outlines the datasets used;
Section V details the experimental results; and Section VI
concludes the paper and proposes areas for future research.

II. RELATED WORK
A. Feature Learning and Multi-modality Learning

The goal of feature learning is to learn a dictionary of basis
vectors or features to describe a dataset, in an unsupervised
fashion. Many feature learning methods are based on single
layer neural networks, including RBMs and Autoencoders,
while others include k-means clustering or Gaussian mixture
models [2]. The features learned by these methods tend to
be similar, with Gabor-like edge filters for natural images,
or handwriting “strokes” for the MNIST digits dataset [2].

Feature learning models become much more powerful
when they are stacked to form a deep network. Each layer of
a deep network learns a progressively more complex feature
abstraction, such as an edge, object-part, or whole object
[3], and deep learning methods have attained state-of-the-art
performance in a range of machine learning tasks [3][4].

Deep learning approaches are particularly well-suited to
multi-modality learning problems, because multiple layers



can capture higher order correlations between two data
modalities. Typically, this involves learning a deep network
on each modality separately, and training a multi-modality
layer on the combined high-level features to capture the
correlations between the two. One such method models the
relationship between audio and video features [4], and is able
to perform tasks such as cross-modality learning (phoneme
classification from video features after training an audio-only
classifier). Other approaches look at learning the relationship
between a large set of images and associated keywords, using
Deep Boltzmann Machines [5] or Bayesian co-clustering
[6]. Such techniques enable multi-modality queries, such as
image keyword tagging, and content-based image retrieval.

B. Learning and Classification for AUVs

AUV dives are frequently used to perform habitat clas-
sification, or benthic habitat mapping, which involve the
categorisation of the ocean floor into clusters or classes that
summarise its biological and physical properties [7].

Various techniques perform classification of visual im-
agery, in either a supervised [8] or unsupervised [9] fashion.
However, given the limited coverage of in-situ image data,
large-scale habitat mapping methods tend to be based on
multibeam acoustic bathymetry data, with the visual imagery
acting as “ground truth” [10]. One such technique clus-
ters AUV-based benthic imagery, and uses the probabilistic
output as training labels for classification of bathymetric
features [11]. Our previous work performs multi-modality
learning from visual and bathymetric features, with improved
habitat mapping accuracy and the ability to sample one
modality from the other [12]. Our new method improves
on these techniques by enabling image-based queries and
unsupervised clustering of the input data.

III. MODEL OVERVIEW
A. Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a stochastic
generative neural network comprised of a set of binary visible
variables x 2 {0, 1}nx and binary hidden variables h 2
{0, 1}nh . The joint distribution p (x,h) is specified by an
energy function:
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where sigm (x) = (1 + e
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�1 is the element-wise logistic
sigmoid function.

The probability of an input vector x can be obtained by
marginalising the joint density p (x,h) over the hidden units:
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where the expression F (x) is known as the free energy of
a visible vector. Unfortunately, the partition function Z is
intractable, which means that the RBM can only compute
unnormalised probabilities. However, this is not restrictive
for our application, and several techniques in the literature
can approximate the partition function if necessary [13].

B. Gated Boltzmann Machines and Mixtures of RBMs

In a Gated Boltzmann Machine (GBM), the graphical
model becomes a tripartite graph. The joint relationship be-
tween x and h is conditioned on a vector of ‘gating’ or con-
ditioning variables z, which modulate both the weights and
the biases of the model. As such, the weights matrix becomes
a three dimensional parameter tensor W 2 Rn

x
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h
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z

representing the connections between every single visible,
hidden, and gating unit. Similarly, the hidden biases b 2
Rn

z

⇥n

h and visible biases a 2 Rn

z
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x are 2D matrices.
If the gating variables are constrained to be a ‘one-of-k’

(i.e. z 2 {0, 1}nz

,

P
k

z

k

= 1), then each possible value for
z indexes a single 2D slice of W and a 1D slice of each bias
matrix. This forms an Implicit Mixture of RBMs model [1],
where z is a mixture indicator variable used to select one of
n

z

RBM components, each with separate weights and biases.
The conditional expressions for the model are now also

conditioned on the mixture indicator z:
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One key difference between the Mixture of RBMs model
and other mixture models is that the mixture responsibilities
are determined implicitly according to the free energy:
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where the expression F (x, z

k

= 1) is the free energy of the
k

th component RBM. Note that the denominator in (5) is
tractable, and is linear in the number of mixture components
n

z

.

C. Architecture

Our model uses a deep multi-modality architecture similar
to previous work [4][12], with feature learning performed on
the visual and bathymetric data modalities separately, and
then a final multi-modality layer to capture the correlations
between the two (Fig. 1) The main difference is in the use
of a gated model for the multi-modality layer, which enables
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Fig. 1. Schematic showing the model architecture. Features from both
modalities are concatenated in the mid layer, and then passed into the
multi-modality layer. The one-of-k indicator variable indexes a single RBM
component from the Mixture of RBMs model.

additional inference capabilities, such as clustering, visual
prediction, and image-based queries.

We use the same mid layer features as in [12]. The mid
layer visual features are extracted using a Sparse coding
Spatial Pyramid Matching (ScSPM) algorithm followed by
Random Projections for dimensionality reduction [9], pro-
ceeded by a single Denoising Autoencoder (DAE) layer [14].
The bathymetric patch is split into two components: a zero-
meaned patch representing the local shape or texture, and
the mean ocean depth value. A single DAE layer is learned
on the patches to capture textural features, and the hidden
activations of the DAE comprise the mid layer features. The
ocean depth is incorporated directly into the mid layer as
a “histogram” feature. Similar to a one-of-k encoding, the
depth range of the dataset is divided into 1m bins. The bin
containing the estimated depth value is set to a value of 1, and
the surrounding bins are encoded according to a Gaussian-
like falloff.

D. Training

Given a set of training vectors {x(1)
, · · · ,x(N)}, RBM

models are usually trained to maximise the mean log proba-
bility of the data, L =

1
N

P
N
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), using Stochastic
Gradient Descent. The gradient of L with respect to the
parameters ⇥ is given by:
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The second expectation can be estimated using Gibbs sam-
pling to draw unbiased samples from the conditional distribu-
tion p(h, z|x(n)

), but the first term is intractable. As a result,
the Maximum Likelihood gradients are approximated using
the Contrastive Divergence (CD) algorithm [1], commonly
used for a variety of energy-based models.

To prevent overfitting, a regularisation penalty (“weight
decay”) is often added to the learning objective. Furthermore,
past work shows that selectively activated hidden units
usually lead to better discriminative performance [2]. In this
work, the sparsity cost is given by the cross entropy between
the average activation of each unit (⇢̂

j

) and a user-defined
sparsity (⇢), and the a weight decay term is the square of the
Frobenius norm of the weights tensor, kWk

F

2.

Algorithm 1 Predicting visual features from bathymetry
1: for k = 1 to n

z

do

2: Initialise the mid layer feature vector with zeros for
the visual features, x = [xB;x

⇤
V ] = [xB; 0; 0; ...; 0].

3: while not converged do

4: Compute E
k

[h|x] = p(h|x, z
k

= 1).
5: Compute E

k

[xV |h] = p(xV |h=E
k

[h|x], z
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6: if kx⇤
V � E

k

[xV |h]k < ✏ then

7: converged
8: else

9: x

⇤
V ( E

k

[xV |h], x ( [xB;x
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V ]

10: end if

11: end while

12: E
k

[xV |xB] ( x

⇤
V .

13: end for

E. Cluster Heuristics
To avoid having to specify the number of mixture compo-

nents required, we use heuristics to add and remove compo-
nents on-the-fly during training. During learning, the mixture
responsibility p(z

k

= 1 | x) of a cluster k is monitored, and
a cluster is removed, when the mean value over the entire
dataset exceeds or drops below a threshold, respectively.
When splitting a cluster, the new cluster parameters are
copied directly from the existing cluster. Our experiments
show that after a few parameter updates, the two identical
clusters diverge to capture different parts of the input dataset.

These cluster heuristics are essential in order to learn a
useful model, as they allow useless mixture components to be
removed, freeing up parameters to allow dominant mixture
components to be split. In our experiments without them,
the model often uses a single mixture component for a large
proportion of the data.

F. Predicting Visual Features
We can predict the midlayer visual features xV , condi-

tioned on the midlayer bathymetric features xB, using a mean
field approximation (Algorithm 1). For each mixture compo-
nent (indexed by k), we use the input values to compute the
mean hidden activations E

k

[h

j

|x] = p (h

j

= 1|x), which are
then in turn used to compute the conditional expectations
E
k

[xV |h]. This process can be iterated until convergence,
yielding E

k

[xV |xB], the conditional expection of xV under
the k

th mixture component. In our experiments, a single
iteration is enough to yield a good conditional estimate.

We then approximate the bathymetry-only mixture respon-
sibilities according to:
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That is, use each component RBM to fill in missing di-
mensions with their conditional expectations, compute the
free energies given these ‘best-case’ scenarios, and then
normalise the probabilities over all mixture components.

G. Image-based queries
Given a region of interest, visual features can be predicted

from the bathymetry and compared to a query image to



produce a utility map over the whole region. This can then be
used by a planning algorithm to explore areas where similar
images are likely to be observed.

The query-by-image procedure is as follows. First, for
each point in the region of interest, we predict the visual fea-
tures from the local bathymetry (i.e. compute the conditional
expectation E

k

[xV |xB] according to each mixture compo-
nent k), and compute the marginal mixture responsibilities
p(z|xB). We then define a utility function U , which acts
as a proxy for the likelihood of observing the query image
given the bathymetry at a particular location. The utility at
a particular location is based on the similarity between the
query image and each of the n

z

predicted images, scaled by
the associated mixture probabilities:
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q

,E
k
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where xV
q

is the midlayer visual feature vector for the query
image, and S(u,v) is a metric computing the similarity
between u and v. In this work, we use the normalised cross-
correlation metric, given by S(u,v) = u·v

kukkvk .

H. Classification

With a gated model, there are a number of options for
features that can be extracted for classification. The mix-
ture responsibilities are themselves a good low-dimensional
feature set, since the model naturally uses different mixture
components for different parts of the input space. Addi-
tionally, for a given data vector, we can obtain hidden unit
activations for all mixture components and stack them into a
single vector. The latter option usually provides more useful
information for a classification task, since it captures the
similarity of the input data to the learned features in all
component RBMs.

Features obtained by unsupervised feature learning or deep
learning models are usually passed into a linear classifier. In
this paper we use a Logistic Regression (LR) classifier for
all experiments.

IV. DATASETS
We introduce a two-dimensional toy dataset (Fig. 2) to

illustrate the operation of our algorithm and gauge its effec-
tiveness. While it is highly simplified compared to our real
multi-modality dataset, it is designed to share one key char-
acteristic: the fact that the conditional distribution of visual
features (represented by dimension xV ) given bathymetric
features (dimension xB) can be highly multimodal. The toy
dataset was created by generating polynomial curve segments
from random coefficient values with additive Gaussian noise.

The real-world bathymetry data is in the form of 15⇥ 15

pixel patches of gridded data from Geoscience Australia [15].
The uniform grid has a separation of 1.6m between points,
so that the patches represent an area of 22.4⇥ 22.4m2.

We also utilise 1360 ⇥ 1024 pixel visual images taken
by our AUV Sirius off the Eastern coast of Tasmania,
Australia [16]. Matched multi-modality data was obtained by
extracting a bathymetry patch centred at the AUV position

Fig. 2. The 2D toy dataset generated for this problem. The dataset is
designed such that the conditional distribution p(xV |xB) can be highly
multimodal.

corresponding to each image. For this work, we ignore any
potential misregistration due to errors in AUV localisation;
this is a reasonable assumption because the navigation ac-
curacy is similar to the bathymetric grid spacing and much
smaller than the scale of spatial variation of benthic habitats.

For classification tasks, we utilise expert annotations of
the AUV image data, consolidated into 5 habitat classes
characterised by keywords “sand”, “screw shell rubble”,
“reef / sand interface”, “reef”, and “kelp” (Ecklonia Radiata).
The labelled dataset contains 75, 400 visual images, each
paired with a bathymetric patch, and is split equally into a
training and test set.

V. RESULTS

We present results with simulated and real-world marine
data. All models are developed in Python using the pylearn2
library [17] and are trained on a NVIDIA GeForce GTX 590
GPU.

A. Toy results

The toy dataset results are shown in Fig. 3. As demon-
strated by Fig. 3(a), different component RBMs are used to
model different parts of the dataset, which means that the
data can be clustered in an unsupervised fashion. Fig. 3(b)
shows the result of sampling from the conditional distribution
p(xV |xB = �1) (the line marked in Fig. 3(a)) using a
MixRBM and the method outlined in Section III-F. Even
with a highly multimodal conditional distribution, the model
can produce reasonable samples, and each mode is repre-
sented by a different component RBM. In contrast, Fig. 3(c)
shows the same result with a standard RBM, by initialising
the missing xV value to zero and performing a number
of iterations of Gibbs sampling [12]. With this approach,
the Gibbs chain is not always able to mix between modes
of the conditional distribution. This could be alleviated by
initialising the missing dimension randomly and repeating a
number of times, but this process scales exponentially with
the number of missing dimensions, whereas the correspond-
ing Mixture-of-RBMs method is linear in the number of
mixture components.

These results illustrate the key benefits of the gated
MixRBM model as compared to a standard RBM. In addition



(a) Input data coloured according to most prob-
able mixture component

(b) Conditional samples generated by Mixture of
RBMs, overlaid on the conditional distribution,
coloured by mixture component

(c) Conditional samples generated by standard
RBM, overlaid on the conditional distribution

Fig. 3. Results on the toy dataset. Since neither the RBM or MixRBM can analytically determine the conditional distribution, it is crudely approximated
for (b) and (c) using the histogram of all points within some � of the setpoint value xB = �1.

to unsupervised clustering of the input data, the model can be
used to tractably generate conditional samples from explicit
regions of our highly multimodal distribution. In contrast
with previous work [12], the model can map a bathymetric
feature to multiple options simultaneously rather than a
single mode / label.

B. Classification

A key requirement of the model is the ability to extract
useful features for classification tasks. Classification results
are shown in Table I for different modality combinations,
along with comparisons to other approaches. In the “base-
line” scenario, the midlayer features are passed directly into
the classifier, and the “DAE” scenario uses our previous
approach [12]. In the z (one hot) scenario, each input is
encoded as a feature vector with a one for the cluster with
highest probability and zeros for the remaining dimensions.
The other two feature scenarios refer to the mixture respon-
sibilities p (z|x) and the mean hidden activations p (h|x) for
all mixture components. In the B or V modality only cases,
the marginal mixture responsibilities p(z|xB) and p(z|xV)
are computed according to Section III-F.

From the results with one hot z features, we can observe
that the most probable cluster component itself holds a lot
of information about the habitat label, with 77% accuracy
with both modalities. Converting the one-hot vector to a
vector of mixture probabilities yields a small improvement
in performance for all scenario combinations, and by using
the full set of hidden features, the classification accuracy is
considerably higher. Both the DAE and MixRBM techniques
offer a 12% improvement when only bathymetry is available,
and also yield a greater accuracy with the other modality
options.

We also report the area under the Receiver Operating
Characteristic curve (AUROC) for each of the classifiers
(Table II), to assess how the results may vary as the dis-
crimination threshold is changed. Since the standard ROC
curve is only applicable to binary classification problems,
we generate micro-averaged ROC curves, where each label

TABLE I
CLASSIFICATION ACCURACY (%) FOR VARIOUS INPUT MODALITIES

Modalities

Model Features B and V B only V only

Baseline Midlayer 82.24 67.62 79.98

DAE + LR [12] p (h|x) 87.23 79.05 81.42

MixRBM + LR

p (h|x) (all) 87.89 79.24 81.30
p (z|x) 78.09 59.09 72.96
z (one hot) 77.66 54.56 70.42

TABLE II
AREA UNDER RECEIVER OPERATING CHARACTERISTIC CURVE

(AUROC) FOR VARIOUS INPUT MODALITIES

Modalities
Model B and V B only V only

Baseline 0.9630 0.9103 0.9614
DAE + LR [12] 0.9785 0.9520 0.9647
MixRBM + LR 0.9833 0.9540 0.9641

is represented as a one-of-k binary vector, and each of the
class dimensions is considered as a single binary classifier.
The results from Table II are consistent with the classifica-
tion accuracies, and demonstrate that the proposed method
provides a considerable improvement over the baseline, and
is nearly identical in performance to the DAE approach [12].

C. Clustering

In addition to improving classification performance, the
model is able to cluster the data in an unsupervised fashion,
unlike the model presented in [12]. When applied to our
real-world multi-modality dataset, the model used 17 mixture
components. The 10 clusters with the greatest number of
input samples are shown in Fig. 4. It is important to note that
the technique is clustering the data jointly over both visual
and bathymetric inputs. Thus, while most images within each
cluster are visually similar, some may be assigned according
to bathymetric similarity.



Fig. 4. Examples from the 10 largest clusters (each row). Each image
(left) is matched with its corresponding bathymetric patch (right)

D. Prediction of Visual Features and Image-based Queries

By predicting visual features in unseen areas, the model
can handle image-based queries, which can aid survey plan-
ning. We present query-by-image results for a region in the
Tasmanian shelf known as O’Hara Bluff, using the procedure
in Section III-G. The bathymetry map for O’Hara Bluff is
shown in Fig. 5, with the AUV trajectory overlaid, and Fig. 6
shows query images from different habitat classes and their
resulting utility maps.

The results are consistent with what we would expect for
each habitat class. Sand images may be observed anywhere,
but are more likely in the deep, flat-bottomed areas towards
the East, while reef images are usually found in rugose
(rugged terrain) regions. Images containing both sand and
reef are likely to occur at the interface between the two,
while kelp forests are restricted to shallower waters.

The results demonstrate that, without any supervision, the
model can handle image-based queries and produce a utility
map consistent with known class-based predictions. Despite
the fact that the AUV transect covers a small fraction of
O’Hara Bluff, the image-based queries can predict the utility
over the larger region.

VI. CONCLUSIONS

In this paper, we have proposed a model based on
a mixture of Restricted Boltzmann Machines, to perform
multi-modality learning using visual images and remotely
sensed bathymetry data from shipborne multibeam SONAR.
Unlike past approaches, this method explicitly captures the
one-to-many relationship between the two modalities: any
bathymetric feature may correspond to a number of different

Fig. 5. Bathymetry map for O’Hara Bluff region, overlaid with the
trajectory traversed by the AUV

6

�10 Similarity Map for Image 7

(a) Sand
�10 Similarity Map for Image 9

(b) Reef
�10 Similarity Map for Image 48

(c) Reef / Sand Interface

6

�10 Similarity Map for Image 2

(d) Kelp

Fig. 6. Some image-based query results for images from different habitat
classes. Left: Query images. Right: Corresponding utility maps over the
whole O’Hara Bluff region, with white regions indicating higher utility.

visual features. We have demonstrated empirically that the
model can cluster the modalities in an unsupervised fashion,
both singularly and jointly, and can be used to predict visual
features in unseen areas using bathymetry alone. This can
be useful for “query-by-image” tasks, where the goal is to
explore areas that are likely to look similar to a given input



image. Such queries are particularly useful because they do
not require any supervised training or manual annotation of
the visual imagery.

Future work will focus on using the model for autonomous
planning in unseen areas. Another interesting direction will
be to extend the approach to perform multi-modality learning
for other platforms, such as for ground vehicles mounted
with velodyne LIDAR and cameras.
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