Sorry, you need to enable JavaScript to visit this website.
magnify
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing
  • Nanocomputing
    Brain Power
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Renewable Energy
    Impacts on Climate Change
  • Truly Unique
    Micro-Device Research
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.
  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”

Research

  • Our research group works on cryptographic engineering. In short, the research group is involved in the design, implementation, and optimization of crypto-systems in embedded hardware and software. In addition, the group actively works on emerging topics in side-channel analysis attacks and countermeasures. The research conducted in this group includes a number of abstraction levels, including hardware micro architecture and platform specific...

  • The group’s research activities focus on enhancing the performance of energy conversion, transmission, and storage devices through the use of nanomaterials.  Current interests include the development of high capacity anode and cathode active materials for lithium ion batteries as well as engineering novel device architectures using carbon nanotubes (CNTs).  A second research area focuses on fabricating and improving the electrical...

  • Our group is broadly interested in light-matter interactions from the perspective of fundamental science as well as technological applications. Currently we are focused on the interplay of electromagnetic modes of radiation, such as laser light, with nanofabricated components, such as mechanical oscillators and rotors. Our aims are the cooling of macroscopic objects into the quantum regime and to establish the limits to quantum sensing of...

  • In Biomedical Signal and Image Analysis (BSIA) Lab at Rochester Institute of Technology, our mission is understanding human physiology from an engineering perspective, developing algorithms that can benefit global health care, and training the next generation of scientists and engineers to develop and apply engineering principals in biomedicine. The research of interest includes application of non-stationary signal analysis and classification...

  • The Biomedical Microsystems Laboratory carries out research in MEMs, sensors, medical devices, integrated electronics, physiological monitoring, signal processing, auditory dysfunction, and assistive device technologies.  Collaborating with colleagues in the colleges of Engineering, Science, and Medicine at RIT, the University of Rochester, the University of South Florida, and Rochester General Health Systems, this group has developed new...