Sorry, you need to enable JavaScript to visit this website.
magnify
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Renewable Energy
    Impacts on Climate Change
  • Truly Unique
    Micro-Device Research
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Nanocomputing
    Brain Power
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.
  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”

Research

  • The conversion of light from the sun into electrical energy is playing a very important role in our current challenge for alternative energy technologies, to reduce our dependence on fossil fuels as well as reduce greenhouse gas emissions. The vision of Dr. Hubbard’s research group is to accelerate scientific breakthroughs in the discovery of materials and structures that will advance the frontier of the conversion of light to electricity....

  • The group’s research is centered around fluorescence spectroscopy of 21st century materials. These materials include conjugated polymers and carbon nanotubes for use in polymer photovoltaics, as well as biological probes. Using fluorescence, we can characterize new materials, study energy transfer and measure excited state kinetics. Through collaborations with RIT's nanopower Research Laboratory we also have access to nanoimaging techniques...

  • The Nano-Bio Interface Laboratory (NBIL) investigates several aspects critical to the interface of nanotechnology and biology, including nanomanufacturing, nanomanipulation, technology-biology interactions, and biomedical applications. The NBIL aims to create cutting-edge nanobiotechnology, advance knowledge in nanoscience and biology, and train the next generation of scientists and engineers at the interface of nanotechnology and biology....

  • Terahertz light is light in-between the microwave and mid-infrared region of the electromagnetic spectrum. Only over the last decade did terahertz technology mature to the point where we can know think about deploying this part of the electromagnetic spectrum for measurement and control purposes in industry. The Terahertz Materials Characterization Laboratory at RIT develops terahertz based material characterization techniques relevant to the...

  • The Microsale BioSeparations (MBS) Lab is a research group working on separation, sorting and detection techniques of nano and microbioparticles, such as macromolecules and cells. We employ electric field driven techniques (dielectroforesis, electrophoresis and electroosmosis) in microfluidic devices. This is a very multidisciplinary area that combines microfluidics, electric fields, chemistry and biology. Our main objective is to develop...