Sorry, you need to enable JavaScript to visit this website.
magnify
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing
  • Renewable Energy
    Impacts on Climate Change
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Nanocomputing
    Brain Power
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Truly Unique
    Micro-Device Research

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”
  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.
  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.

Research

  • The Thermal Analysis, Microfluidics and Fuel Cell Laboratory (TAmFL) at RIT has gained international recognition for advances in fundamental research. With nearly two dozen student researchers, the laboratory immerses students in real-world research that establishes students within the industry long before graduation. Nearly 20 years ago, the laboratory was founded to focus on understanding the fundamentals of microfluidics and the phenomena...

  • The Nanophotonics Group is developing silicon photonic chips that will revolutionize computing, communication, and sensing systems. Silicon enabled the electronics age with its good electrical properties, high purity, and scalable manufacturability. However, all electronic devices face imposing performance and energy challenges due to the fundamental limits of electrons. In contrast, photons propagate at the speed of light, can carry vast...

  • Fiber-optical links have enabled tera-bits-per-second transcontinental communication. The mission of Novel Material Photonics (NMP) lab is to develop novel photonic devices that can guide and manipulate optical signals at the nanoscale, bring photonic components into VLSI circuits, and realize on-chip communication and computation at the optical speed. Activities within NMP lab are directed toward the exploration of novel nanomaterials and...

  • Investigating and modelling the mechanical properties of materials is important for many applications. The most common technique used for mechanical characterization of materials is called nanoindentation. The currently available tools utilized in order to perform nanoindentation have their limitations in terms of sensitivities of force and displacement or limitations due to the hardware for a broad range of material properties. When it comes...

  • The research activities in the Thin Film Electronics group are focused on inorganic thin-film electronics on both silicon and non-silicon platforms.  Research on low-temperature polycrystalline silicon (LTPS) is exploring an alternative method of crystallization using a flash-lamp annealing (FLA) process.  The instrument uses Xenon flash-lamps with an extremely high irradiance to expose samples with pulses in the microsecond timescale, and...