Sorry, you need to enable JavaScript to visit this website.
magnify
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Renewable Energy
    Impacts on Climate Change
  • Nanocomputing
    Brain Power
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Truly Unique
    Micro-Device Research
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.
  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.

Research

  • The Nano-Bio Interface Laboratory (NBIL) investigates several aspects critical to the interface of nanotechnology and biology, including nanomanufacturing, nanomanipulation, technology-biology interactions, and biomedical applications. The NBIL aims to create cutting-edge nanobiotechnology, advance knowledge in nanoscience and biology, and train the next generation of scientists and engineers at the interface of nanotechnology and biology....

  • Our research group works on cryptographic engineering. In short, the research group is involved in the design, implementation, and optimization of crypto-systems in embedded hardware and software. In addition, the group actively works on emerging topics in side-channel analysis attacks and countermeasures. The research conducted in this group includes a number of abstraction levels, including hardware micro architecture and platform specific...

  • Fiber-optical links have enabled tera-bits-per-second transcontinental communication. The mission of Novel Material Photonics (NMP) lab is to develop novel photonic devices that can guide and manipulate optical signals at the nanoscale, bring photonic components into VLSI circuits, and realize on-chip communication and computation at the optical speed. Activities within NMP lab are directed toward the exploration of novel nanomaterials and...


  • Effective manipulation of fluids at the micro/nanometer scale is of great interest in fluid dynamics, biological processes, and material synthesis. Microfluidics together with nanofabrication provides a fine control of fluid transport and interfacial dynamics, and therefore offers a wealth of ways to harness the processes of multiphase flow at the microscale. Our group takes microfluidics and nanofabrication as the main technical...

  • The group’s research is centered around fluorescence spectroscopy of 21st century materials. These materials include conjugated polymers and carbon nanotubes for use in polymer photovoltaics, as well as biological probes. Using fluorescence, we can characterize new materials, study energy transfer and measure excited state kinetics. Through collaborations with RIT's nanopower Research Laboratory we also have access to nanoimaging techniques...