The TEAK Project: Traveling Engineering Activity Kits

Artificial Hearing

Partial support for this project was provided by the National Science Foundation's Course, Curriculum, and Laboratory Improvement (CCLI) program under Award No. 0737462. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
ACTIVITY OVERVIEW

Artificial Hearing Overview

More than 36 million Americans have experienced some type of hearing impairment. Engineers have developed devices that help some of these people hear, or hear better, and this activity will give students a sample of the types of challenges faced in creating these designs. The simplest hearing aids just amplify sound, and students completing this activity will build their own amplifier systems that receive, amplify, and output sounds. Discussions will also expose students to some of the other common means of accommodating hearing impairment.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Decibel Activity</td>
<td>15 min</td>
<td>In this activity, students will learn the decibel levels of different sounds. Students will measure the amount of decibels they produce when they speak, whisper, or yell. This will give the students a sense of how loud a 60 or 80 decibel level is. The main focus is related to how engineers effectively design devices to fix hearing damage based on the understanding of decibel levels.</td>
</tr>
<tr>
<td>Amplifier Circuit Activity</td>
<td>25 min</td>
<td>This activity allows the students to work in groups to make an amplifier. Students will connect the amplifier to an mp3 player while changing the resistors to different values (different resistor values will affect the sound being outputted from the amplifier). Students will then replace the resistor with a potentiometer, which acts like a volume control in a hearing aid.</td>
</tr>
</tbody>
</table>

Learning Objectives

By the end of this lesson, students should be able to…

- Describe how engineers measure sound
- Explain how a hearing aid helps people who have lost their hearing
- Explain how the volume of a hearing aid works
- Explain the dangers of loud sound

NYS Learning Standards

Standard 1: Engineering Design

- Identify needs and opportunities for technical solutions from an investigation of situations of general or social interest.
- Conduct an experiment designed by others.
- Use appropriate tools and conventional techniques to solve problems about the natural world, including: measuring, observing, describing, classifying, and sequencing.
TABLE OF CONTENTS

Instructor Preparation Guide ... 4
 Bioengineering Overview ... 4
 Ear Overview ... 4
 Hearing Aid Overview ... 6
 Electrical Components Overview ... 7
Bioengineering Introduction ... 9
 Background Information ... 9
 Bioengineering Group Discussion ... 9
Sound And Hearing Introduction ... 10
 Background Information .. 10
 Simplified Definitions ... 10
 Sound and Hearing Group Discussion .. 11
 Learning Objectives .. 12
 Materials for Each Group ... 12
 Procedure ... 12
 Expected Results .. 13
 Concluding Discussion ... 13
 Learning Objectives .. 14
 Materials for Each Group ... 14
 Procedure ... 14
 Expected Results .. 14
Common Sound Activity Handout ... 16
Common Sound Activity Handout Answer Key 17
Amplifier Circuit Worksheet .. 18
Circuit Handout .. 19
 Circuit Handout- Extra ... 20
Decibel Meter/MP3 Player Instructions .. 21
Image Sources .. 22
Revisions .. 22

Signifies Group Discussion

Signifies Activity
INSTRUCTOR PREPARATION GUIDE

Bioengineering Overview

Bioengineering is the application of engineering principles to address challenges in the fields of biology and medicine. Bioengineering also encompasses engineering design to the full spectrum of living systems.

Ear Overview

The purpose of the ear is to collect, convert and send sound signals to the brain. The outer ear, the middle ear and the inner ear make up the human ear. These three parts are necessary in producing a sound signal which the brain understands.

Figure 1: Anatomy of the ear
The Outer Ear:
The outer ear is also known as the **pinna** or auricle. The sole purpose of the outer ear is to collect sounds. The outer ear is pointed forward with numerous curves that enable a person to determine the direction of sound.

The Middle Ear:
After the sound waves are collected in the outer ear, it is passed along the ear canal to make its way to the middle ear. As sound waves travel through the eardrum, it produces a vibration. The eardrum is a sturdy and sensitive piece of skin that can oscillate back and forth even with the slightest air pressure. The ear drum also acts as a divider between the outer ear and the ossicles. The ossicles are made up of three tiny bones which regulate sound towards the inner ear. The vibrations produced by the eardrum are passed through to the hammer which causes the anvil to vibrate and finally stirrup. After the stirrup, the vibration travels to the inner ear.

![Figure 2: Picture of the Ossicles](image)

The Inner Ear:
When sound reaches the inner ear, it enters the cochlea which is shaped like a small shell filled with liquid. Within the cochlea is contains microscopic cells covered in hairs. Vibrations that enter the cochlea cause the hair to move. The movement of hairs produces nerve signals which the brain interprets as sound.
Hearing Aid Overview

All hearing aids contain the following parts: Microphone, Amplifier, Speaker, and Battery.

Microphone- The microphone collects the sound waves and converts them into an electrical signal which is passed to the amplifier.

Amplifier- The amplifier is a circuit that takes the electrical signals from the microphone and amplifies it to a desired level and then transmits it to the speaker.

Speaker- Also called the receiver, converts the amplified electric signals back into sound and sends it to the ear canal.

Battery- The battery powers all the electrical components of the hearing aid.
Electrical Components Overview

Resistor - A resistor is an electrical component with 2 terminals that is designed to reduce electrical current. Resistors of higher resistance produce less current. The resistance of a resistor is determined by the colors of the band around it.

Capacitor - A capacitor is an electrical component with 2 terminals that is designed to store electrical charge. As the capacitor is charging, current will flow, but once the capacitor is fully charged, the current will stop flowing. There are two types of capacitors: Polarized and Non-Polarized. Polarized capacitors have to be connected in a certain way because of its positive and negative ends. Non-Polarized capacitors can be connected in any way.

Potentiometer - A potentiometer is an electrical component with 3 terminals that can be designed to manually adjust resistance. Potentiometers are used in applications where there are different levels of output. For example, it is used to change volume and brightness.

![Figure 4: Amplifier Circuit](image)
The Sensory System

DURATION
45-50 Minutes

CONCEPTS
Bioengineering
Sensory System
Sound Properties
Biomedical Applications
BIOENGINEERING INTRODUCTION

Background Information
Bioengineering is the application of engineering principles to address challenges in the fields of biology and medicine. Bioengineering also encompasses engineering design to the full spectrum of living systems.

Bioengineering Group Discussion
(Pose the following questions to the group and let the discussion flow naturally…try to give positive feedback to each child that contributes to the conversation.)

Q: What do you think bio (biology) means?
• The study of life and a branch of the natural sciences that studies living organisms and how they interact with each other and their environment.
• The study of the environment.
• The study of living organisms and living systems.

Q: What do you think engineering is? What do you think it means to be an engineer?
• A technical profession that applies skills in:
 o Math
 o Science
 o Technology
 o Materials
 o Structures

Discuss with the students what bioengineering is and the broad scope of areas that bioengineering includes.
For this discussion, provide students with examples of bioengineered products and applications.
• Bioengineering is the application of engineering principles in the fields of medicine, biology, robotics, and other living systems.
• Examples of products that have been bioengineered are:
 o Hearing Aids
 o Cochlear Implants
SOUND AND HEARING INTRODUCTION

Background Information
The sound we hear requires a few manipulations before it is processed. First, the sound waves are collected, then converted into electrical impulses, and finally sent to the brain via the auditory nerve for the brain to understand. A sound wave has characteristics just like any other type of wave, including amplitude and frequency.

Simplified Definitions

Amplitude – The amplitude is the volume or strength of a sound. Referring to sound waves, the amplitude would be the biggest displacement from zero. The unit of measurement for the loudness is decibels. Since decibel is logarithm based, every difference by 1 means that a sound is either 10 times louder or softer.

Frequency – The frequency is the number of vibrations per seconds measured in hertz. This is also referred as pitch. High frequency generates high, screeching sounds. Low frequency generates low, deep sounds.

Figure 5: Plot of amplitudes

Figure 6: Plot of frequency waves
Sound and Hearing Group Discussion

(Pose the following questions to the group and let the discussion flow naturally…try to give positive feedback to each child that contributes to the conversation.)

Q: If you woke up one day and had trouble hearing things, what are some things that you would have a hard time doing?

- Listening to music
- Watching T.V.
- Talking to people

Q: What can cause a person to have hearing trouble?

- Born with it
- Head injury
- Exposure to loud sounds

Q: Why do we cover our ears when we hear something really loud?

- It is important to reduce the amount of time exposed to loud sounds because it can lead to hearing loss and/or deafness.

Q: What are some ways to keep our ears healthy?

- Try to avoid exposure to loud sounds
- Regular check ups
- Don’t stick anything in the ear canal

Q: What are some sounds that can damage your ears if you listen to it for too long?

- Police siren
- Plane engine
- Really loud music

Q: Since we can’t see sound waves, what are some things that we can see that act like a wave?

- Water ripples
- Flags on a windy day
- Slinky going down a stair
Learning Objectives

By the end of this exercise, students should be able to…

- Give examples of sounds that correspond to certain decibel levels
- Identify if a certain sound is safe for ears
- Describe how engineers measure sound

Materials for Each Group

- Decibel Meter
- Common Sound Worksheet

Procedure

1. Get the students into 5 groups
2. Explain to the students that engineers use a decibel meter to measure how loud a sound is
3. Have each student in the group talk and whisper to the decibel meter and record the level
4. Hand out the Common Sound Worksheet
5. The students should work together in the group to put each sound description in the appropriate categories
6. Review the findings with the class.

Measuring Decibel Activity – 15 Minutes

End Measuring Decibel Activity
Expected Results

- See Common Sound Worksheet Answer Guide

Concluding Discussion

The decrease in the ability, whether full or partial, to detect or understand sounds is considered a hearing loss. Hearing loss can be categorized depending on which part of the auditory system was damaged. The three categories of hearing loss are: **conductive hearing loss**, **sensory hearing loss** and **neural hearing loss**.

A.) **Conductive Hearing Loss** - This refers to any problem that involves the middle or outer ear. Those with conductive hearing loss are regarded as having a mild hearing loss because it can be corrected through medical treatment.

B.) **Sensory Hearing Loss** - This refers to the destruction or damage of the hair cells causing the inability of the cochlea to function correctly. In most cases, this results in permanent hearing and speech impairment.

C.) **Neural Hearing Loss** - This refers to complications within the inner ear. Specifically the nerves that transmit the signals from the cochlea to the brain.

Q: What do you think can be done to improve this hearing device?

- Extra components can be added to the circuit to reduce noise and smooth the wave signal

Q: If someone was very sensitive to sound, what kind of device can be created to help them?

- A device like the hearing aid could be created but instead of amplifying sound, it can reduce sound

Q: What are some things bioengineers have done to help people with hearing problems?

- Design hearing aids
- Place tubes in the ear
- Cochlear Implants
- Replace part of the bones in the middle ear with wires
Learning Objectives
By the end of this exercise, students should be able to...

- Identify parts of a hearing aid
- Explain how volume control works
- Explain how a hearing aid helps people with loss of hearing

Materials for Each Group

- (1) 400 Contact Breadboard
- (2) 10,000Ω resistor
- (1) 470Ω, 330Ω, 100Ω resistor
- (1) 9V battery
- (1) 9V battery snap connector
- (1) Potentiometer
- (1) Voice Recorder
- (1) Decibel meter
- (1) 8Ω speaker
- (1) 250uF, 10uF, 0.47uF capacitor
- (1) LM386 Audio Power Amplifier

Procedure

1. Get the students into 5 groups.
2. Take out all the materials listed above.
3. Build the amplifier circuit according to the “Circuit Handout”.
4. Connect the circuit to the voice recorder and battery. Now play the music and listen to it through the speaker. Record the observation in the worksheet.
5. Referring to “Circuit Handout- Extra” find the 470Ω resistor (Trial 2) and insert them in the coordinates pictured. Play the music and listen to the sound through the speaker. Record the observation in the worksheet.
6. Remove the 470Ω and insert the 100Ω resistor (Trial 3) in the same spot. Play the music and listen to the sound through the speaker. Record the observation in the worksheet.
7. Remove the 100Ω resistor and attached a potentiometer “Circuit Handout- Extra”. Turn the knob and record what is happening to the sound.

Expected Results

- As the knob is turned counterclockwise, the sound should get louder.
- An increase in resistance results in a decrease in sound.
COMMON SOUND ACTIVITY HANDOUT

<table>
<thead>
<tr>
<th>Sound Description</th>
<th>Comfortable Zone (Under 65 dB)</th>
<th>15 Minute Only Zone (70 dB - 99 dB)</th>
<th>Damage Zone (100 dB - 119 dB)</th>
<th>Danger Zone (Greater than 120 dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Clock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby Crying</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barking Dog</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Horn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Bell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Drill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firecracker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet Engines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Concert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shotgun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow Blower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thunder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum Cleaner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whisper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 5 sound descriptions in each category
COMMON SOUND ACTIVITY HANDOUT ANSWER KEY

<table>
<thead>
<tr>
<th>Sound Description</th>
<th>Comfortable Zone (Under 65 dB)</th>
<th>15 Minute Only Zone (70 dB - 99 dB)</th>
<th>Damage Zone (100 dB- 119 dB)</th>
<th>Danger Zone (Greater than 120 dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Clock (75 dB)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baby Crying (110 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Barking Dog (75 dB)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blender (100 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Breathing (10 dB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Horn (110 dB)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Bell (80 dB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Drill (94 dB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firecracker (130 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jet Engines (140 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Talking (60 dB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain (50 dB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerator (40 dB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Concert (130 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Shotgun (130 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Snow Blower (105 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Thunder (120 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Train (105 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vacuum Cleaner (80 dB)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Whisper (20 dB)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AMPLIFIER CIRCUIT WORKSHEET

How loud is the sound heard in Trial 1? (Circle one)
Not very loud I can hear it fine Loud Very Loud

How loud is the sound heard in Trial 2 compared to Trial 1? (Circle one)
Softer About the same Louder

How loud is the sound heard in Trial 3 compared to Trial 2? (Circle one)
Softer About the same Louder

What happens to the sound when the resistor value gets smaller?

If this is the sound wave from using a $470\,\Omega$ resistor, what do you think a sound wave from using a $940\,\Omega$ would look like?

If the hearing aid is making a sound that is too loud, what can an engineer do to lower the sound?

When the knob is turned to the left, is the resistor value getting smaller or larger? Why?
CIRCUIT HANDOUT

*Important: Please make sure each component matches the picture exactly!!

Trial 1-No Resistor

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

THE CIRCUIT SHOULD LOOK LIKE THIS
CIRCUIT HANDOUT- EXTRA

The final circuit should look like this

Trial 2 - 470Ω Resistor

Trial 3 - 100Ω Resistor

Potentiometer

The TEAK Project Rochester Institute of Technology
DECIBEL METER/MP3 PLAYER INSTRUCTIONS

Measuring Decibel Activity:

1. Turn dial to “70”.
2. Press “Response” once so that the response is slow.
3. Point speaker to the person speaking
4. The number on the screen is the decibel level.
5. After using the decibel meter, turn dial to “OFF”

To play music from the MP3 player:

1. To turn on the MP3 player, press and hold “Menu” until something comes on the screen.
2. Press “±” to scroll up or down until you see “Music” on the screen.
3. Press “play”.
IMAGE SOURCES

 http://media-2.web.britannica.com/eb-media/04/14304-004-6C1B7EB1.gif

 http://media-2.web.britannica.com/eb-media/03/14303-004-A1009028.gif

 http://www.datasheetcatalog.org/datasheet/nationalsemiconductor/DS006976.PDF

 http://sciencewithme.com/learn-about-the-ear/

 http://www.physicsclassroom.com/class/sound/U11L2a.cfm

REVISIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Changes Made</th>
<th>Changes Made By</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/01/2013</td>
<td>Edited for grammar and syntax issues. Reorganized the format.</td>
<td>Todd Jackson</td>
</tr>
</tbody>
</table>