Striking a Match: Developing a Remote-Mentoring Program for College Students with Disabilities

Lisa Elliot & James McCarthy
Deaf and Hard of Hearing Virtual Academic Community (DHHVAC)
Rochester Institute of Technology/National Technical Institute for the Deaf (RIT/NTID), Center on Access Technology
Postsecondary Disability Training Institute Conference, Philadelphia PA
June 10, 2016
Session objectives

• You will learn about the:

 • Deaf and Hard of Hearing Virtual Academic Community (DHHVAC), and why it includes mentorship functions

 • Basic functions of mentorship, with a focus on matching
Who We Are

• Deaf STEM Community Alliance
 • Only Alliance specifically for D/HH students

• Supported by the National Science Foundation, HRD #1127955

• Multi-year project (Sept 2011 - Aug 2017)
 • Now in our 5th year
RIT is the lead institution for this project, with Camden County College and Cornell University as partners.
Goal and Objectives

• Goal:
 Create a *model* virtual academic community to increase the graduation rates of postsecondary D/HH STEM majors in the long term

• Iterative and incremental (Cockburn, 2008)
 • Iterative – testing what works and revising what doesn’t
 • Incremental – building model in stages instead of all at once
Goal and Objectives

Objectives

1) Document and disseminate a description of the process of creating a model VAC for replication

2) Increase the GPAs and retention rates of D/HH students in STEM majors
What are the challenges?

Barriers to success in STEM

Lower Retention

Lower Graduation

Fewer STEM Professionals
Barriers to success

- Student preparation
- Socialization
- Accessible media
A vicious circle

Insufficient D/HH representation in STEM professions

Lack of support causes D/HH students to change majors or drop out

D/HH professionals providing support and role modeling are few and far between
How DHHVAC is helping

• This model that offers academic and vocational support by:
 • Facilitating remote tutoring and mentoring
 • Developing an online community of practice between students, tutors, and mentors

• Mentoring in the DHHVAC: From published literature to practical application
DHHVAC Model
Barriers & Strategies

Student Preparation
- Remote Tutoring
- Remote Mentoring
- Using G+ Hangouts

Socialization
- Remote Mentoring Peer-to-Peer Interaction
- Using G+ Private Community & Facebook Secret Groups

Accessible Media
- Accessible STEM Information
- Using Website,
G+ Private Community,
Facebook Secret Group & G+ Public Page
DHHVAC e-mentoring model

• Mentors are few, far between, and busy
 • Solution: remote mentoring (de Janasz & Godshalk, 2013)
 • ‘Go where the mentees are’: online (Evans & Forbes, 2012)

• Scalable, affordable, and adaptable
 • Modular, open-source, and applicable to a wide variety of population groups and organizational structures
Mentorship functions

• Support (Ensher, Heun, & Blanchard, 2003)
 • Career development (academic/vocational)
 • Personal development

• Role modeling
Career development in the DHHVAC

• Both school- and job-related

• Case-specific
 • Assignments; projects; documents

• Successful cases tend to be related to this type of support

• Occasionally blurs into role-modeling
 • Interaction with co-workers and colleagues
Personal development in the DHHVAC

• More likely in informal, spontaneous mentoring relationships

• Culture of professionalism

• ‘Weak-tie’ relationships presents an additional challenge in e-mentoring (Shpigelman, Weisee, & Reiter, 2009)
 • More like neighbors or service providers (e.g., doctors or bank tellers) than friends
Role modeling in the DHHVAC

• Effect on mentoring relationship
 • Student may be overwhelmed or hesitant
 • Student may be proud to correspond

• Effect of computer-mediated communication (Ensher, Heun, & Blanchard, 2003)

• Traditional mentors as role models have a positive effect on eventual job satisfaction for mentees (Ensher, Thomas, & Murphy, 2001)
 • As opposed to peer or step-ahead mentors
The DHHVAC mentors

• Selected from a broad range of disciplines
 • Accounting, animal science, architecture, biology, biochemistry, biophysics, bioengineering, biotechnology, civil engineering, ecology, industrial engineering, information technology, materials science, structural engineering, user-experience design, Web development

• Recruited through a variety of channels
 • Professional Facebook group for deaf and hard of hearing (D/HH) STEM professionals
 • Alumni Association
 • Word of mouth
 • Previous participants in other roles (e.g., participating student)

• About half are RIT/NTID alumni; all are volunteers
Mentorship coordinator

• Recruits mentors and mentees
• Matches mentor/mentee dyads
• Develops and documents program structure and processes
 • Roles
 • Expectations
 • Facilitation (Single & Single, 2005)
• Adapts to new technological solutions and implements as needed
• Responds to mentor/mentee concerns and seeks solutions
From greeting to welcome

- **Application**
 - Basic demographic information, academic background, work history, consent

- **Background check**
 - RIT’s HR department investigates suitability for working with students

- **DHHVAC account and profile setup**
 - Google Apps for Education—Custom domain
 - Gmail, Google+, Google Drive
 - Invitations to Google+ private community and Facebook group
From greeting to welcome

• Mentors are automatically assigned to new student participants
 • Considers student’s major and mentor’s occupation

• Student request
 • Often a result of a change in academic focus, or for specific projects

• Growing a pool
 • Accepting volunteers to hedge against future requests/new participants
Striking a match

• Two components (Dawson, 2014)

 • Selection
 • Mentors: Self-selection; interpersonal; mentee request
 • Mentees: Self-selection; instructor recommendation; tutor recommendation

 • Matching
 • Mentee choice
 • Vocational similarity
 • Fine-grained within engineering-related fields
 • Demographic similarity
Vocational similarity in the DHHVAC

- Importance varies; affected by mentee choice
 - Case study: Student declines mentoring
 - Case study: Student shops for mentors

- Cross- or multidisciplinary mentoring
 - Second case study above
 - Mentors for undeclared students
Demographic similarity in the DHHVAC

• A new wrinkle: Communication preference

• Another new wrinkle: Technology adoption (Williams, Sunderman, & Kim, 2012)
 • Case study: Glide

• Suggests cross-cultural competence may be a strong indicator of successful matches (Merriweather & Morgan, 2013)
Introductions

• First contact facilitated by DHHVAC staff, ideally
 • Basic information about each party
 • Suggestions for initial and future discussions
 • Request for reports of contact
Maintenance

• Monthly check-in
 • E-mail to all mentors with requests for feedback or reports of contact
 • Suggestions for discussion
 • Encouragement to keep lines of communication open

• Communication methods
 • E-mail strongly preferred by mentors/mentees
 • Video chats via Google Hangouts and Skype
Maintenance

Ongoing: Contact log

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mentor Name</td>
<td>Student Name</td>
<td>Date of Contact</td>
<td>Method of Contact (E-mail? Hangout? Text? Other?)</td>
<td>Synchronous length of contact</td>
</tr>
<tr>
<td></td>
<td>Smith Jones</td>
<td>Robert Joseph</td>
<td>1/16/2016</td>
<td>Skype</td>
<td>45 minutes</td>
</tr>
</tbody>
</table>
Collaborations and accomplishments

• Architecture
 • Architect and student corresponded on redesign of NTID lobby and associated spaces

• Engineering
 • Student corresponded with two mentors (industrial design and biotechnology) to develop a project for an annual innovation competition

• Biology
 • Mentor named one of NPR’s “50 Greatest Teachers"
From One to Many

This is an example of a post within the private community.
Benefits

• Individual
 • Intergenerational continuity
 • Future collaborative relationship development
 • Number of colleagues in the field increases

• Institutional
 • Alumni maintain relationship with alma mater
 • Increased academic performance within a cohort
 • Increased retention rates within underrepresented populations
 • Increased graduation rates
Conclusions

• Underrepresented populations need effective role models
• Individual students may need individual support
• Mentorship is one solution
• The DHHVAC is a model that attempts to implement this solution
• Matching is key to the program’s success
 • Far more complicated than it appears
• Intergenerational cooperation and support can further personal and institutional progress
Questions? Comments?
Contact information

Lisa Elliot, PI
lisa.elliot@rit.edu

James McCarthy, DHHVAC Manager
jkmnod@rit.edu

http://www.dhhvac.org

Williams, S., Sunderman, J., & Kim, J. (2012). E-mentoring in an online course: Benefits and challenges to e-mentors. *International Journal of Evidence Based Coaching and Mentoring, 10*(1), 109-123.