Abstract—Space-time coding and multiple-input, multiple-output wireless systems promise to deliver higher data rates with higher reliability than traditional systems, with no increase on transmit power or bandwidth. In this expository paper, we present multiple-antenna systems and their ability to increase the number of dimensions that may be transmitted per channel use. We present two space-time codes, one that is oriented towards maximizing the data rate (V-BLAST) and the other towards increasing reliability (Alamouti). We present a third option, a hybrid code, that has the advantages of both types of coding. This code belongs to the general class of linear dispersion codes, and it has a particular structure that allows the design of a hardware receiver with very low complexity.

Index Terms—DSTT, Hybrid Space-Time Codes, Givens rotations, CORDIC algorithm, Sorted QR Decomposition.

I. INTRODUCTION

Consider the problem of transmitting a sequence of real numbers \(S = s_1, s_2, \ldots, s_n \), where the sequence consists of \(n \) numbers taken from the set \(Q = \{ q_1, q_2, \ldots, q_k \} \), over an electronic communications channel. This can be accomplished by selecting a set of functions \(F = \{ f_1, f_2, \ldots, f_n \} \) such that

\[
\int_{-\infty}^{\infty} f_i(t) f_j(t) dt = 0
\]

whenever \(i \neq j \), where \(i \) and \(j \) take values between 1 and \(n \), and also

\[
\int_{-\infty}^{\infty} f_i(t) f_i(t) dt = 1.
\]

A set \(F \) that meets these two conditions is called an orthonormal set of functions. The sequence \(S \) may then be transmitted by forming the signal

\[
x(t) = \sum_i s_i f_i(t).
\]

The orthonormality of the signals in \(F \) allows the receiver to recover the transmitted numbers using

\[
s_i = \int_{-\infty}^{\infty} x(t) f_i(t) dt.
\]

This method is illustrated in Figure 1.

In the presence of a random, white noise signal \(v(t) \), the received signal is \(r(t) = x(t) + v(t) \) and the numbers cannot be recovered without error. The receiver may estimate each number as

\[
\hat{s}_i = \int_{-\infty}^{\infty} r(t) f_i(t) dt = s_i + v, \quad (6)
\]

where \(v \) is a Gaussian random variable with zero mean and variance equal to \(N_0/2 \). As long as the numbers \(q_i \) are sufficiently separated and the noise variance is low enough, then reliable communication is possible by applying the following rule in the receiver: having received \(\hat{s}_i \), estimate the transmitted number as the element of \(Q \) that is closer to \(\hat{s}_i \) using Euclidean distance.

In most cases, the sequence of numbers to transmit is very large. Finding a corresponding set of orthonormal functions may seem like a hard problem, but in fact it is not. It has been proved that, given a time interval of duration \(T \), and an available bandwidth \(B \), then a set of orthonormal signals \(F \) of duration \(T \) and bandwidth \(B \) with \(2BT \) elements exists. The importance of this results is that it imposes a limit on the rate at which transmission may be accomplished; that is, at most 2 numbers may be transmitted, per available hertz of bandwidth, per second.

An interesting and very useful analogy may be made between orthonormal vectors and orthonormal signals. Just as a set of \(n \) vectors define the axes of an Euclidean space of \(n \) dimensions, the set \(F \) of \(n \) orthonormal signals also define an Euclidean space of the same number of dimensions. The sequence \(S \) becomes a vector \(S \), where each element \(s_i \) defines the coordinate of the vector along the direction of \(f_i \). We say, then, that it is possible to transmit 2 dimensions per available hertz per second. Note that, if the numbers that are transmitted are complex, then we say we may transmit one complex dimension per hertz per second.

This theoretical limit on transmission seems insurmountable. However, it is based on the initial assumption that the channel reproduces at the receiver end a voltage produced at the transmitter end. This assumption is not true for the wireless channel. In this channel, the signal received by an antenna is the sum of all signals transmitted by all antennas that are within its range. Furthermore, each transmitted signal is subject to different channel conditions that result in different
amounts of fading, delay, interference, attenuation and noise. The question is then, what is the number of dimensions that may be transmitted on this channel? And, what transmission schemes may be required to take advantage of those extra dimensions, if any?

Consider a wireless transmitter with n_T antennas. Each antenna transmits independently of the others, but all use the same bandwidth and all share the available transmit power. The elements of S are transmitted n_T at a time. At the receiver, there are n_R antennas, all receiving signals over the same bandwidth. The wireless channel presents slow fading, which means that each transmitted signal experiences an attenuation and a delay. The attenuation and delay are different and independent for each pair of transmit and receive antennas. This system may be modeled as

$$r = Hs + v,$$ \hspace{1cm} (7)

s is the transmitted signal vector, consisting of n_T complex numbers. H is a complex matrix of size $n_R \times n_T$; element h_{ij} is the channel gain between transmit antenna j and receive antenna i, and is a random Gaussian variable of zero mean and variance $1/2$ per dimension. Vector v is the noise vector; its n_R elements are random Gaussian variables of zero mean and variance $N_0/2$. Finally, each of the n_R elements of vector r signal received by one of the receiver antennas. This kind of system is known as a multiple-input, multiple-output (MIMO) wireless system, and it is illustrated in Figure 2.

Now we focus on the effect of matrix H on the information vector s. A matrix rotates and scales vectors. This is illustrated in Figure 3. What is most important is that the matrix changes the coordinates of the vector, which may result in compression of the vector in one or more dimensions. When this happens, then the separation between the received vector elements becomes smaller and the system becomes more susceptible to noise.

In spite of these apparent difficulties, it can be shown that the wireless channel does increase the number of dimensions in the communications system. This can be seen with help from the matrix singular value decomposition. Any matrix H may be expressed as the product of three matrices:

$$H = USV^*.$$ \hspace{1cm} (8)

(Here, V^* means the complex conjugate of V). Matrices U and V are orthogonal, while matrix S is diagonal. This means that $Hx = USV^*$ takes vector x, rotates it, then scales it, then rotates it again. In theory, then, the transmitter could pre-rotate the vector to be sent, and the receiver could post-rotate it, to counteract the effects of the channel matrix. More precisely: in order to transmit vector x, the transmitter calculates and sends vector V^*x. The channel will scale it and rotate it, so the received vector will be:

$$r' = HV^*x = USx.$$ \hspace{1cm} (9)

The receiver undoes the last rotation:

$$r = U'r' = Sx.$$ \hspace{1cm} (10)

So, the multiple-antenna wireless channel has the effect of scaling each dimension of the transmit vector by the singular values of the channel matrix. In effect, this means that the channel may transmit $2n_T$ dimensions per second per hertz. This is illustrated in Figure 4.

The SVD formulation is useful to prove the potential of the wireless channel, but not necessarily to effectively make use of it. The reason is that calculating the SVD is computationally expensive, and also because the transmitter needs to have knowledge of V, which is usually available. Space-time codes are a set of transmission and reception schemes that attempt to make use of the extra dimensions afforded by the wireless channel to improve data rate, reliability, or both. The following sections explore three different space-time codes and their performance. In Section II, we present three space-times codes in more detail. In Section III we introduce the correlated wireless channel, which presents significant obstacles to wireless communications. In Section IV, we introduce a hybrid code with two particular properties: first, it is a linear dispersion code, which means that it may be expresses as a spatial multiplexing code; second, its particular structure allows the design of a low complexity hardware receiver, which is also described in detail. In Section V we present simulation results that show the performance of each code when configured to have identical data rates. Finally, we present our conclusions in Section VI.

II. Space-Time Codes

A MIMO system employs multiple antennas, both at the transmitter and the receiver, creating time and spatial diversity. Two general techniques have been devised to take advantage of MIMO systems: Spatial Multiplexing and Diversity Transmission. Spatial multiplexing relies on signal processing at the receiver to create multiple independent transmit channels, resulting in very high spectral efficiency with a simple coding scheme. One of the better known spatial multiplexing techniques is V-BLAST [5]. Diversity transmission, on the other hand, increases diversity gain, improving link reliability; this is achieved for instance by orthogonal Space-Time Block Codes.
Fig. 3: The effect of matrix multiplication on vectors, represented geometrically. A matrix multiplication scales, rotates, then scales again a vector. Here, the effect is illustrated on vectors on the surface of a sphere.

Fig. 4: An illustration of the number of dimensions available in the wireless channel. In (a), each blue dot represents a 3-D signal. This set of signals is pre-rotated before transmission (b). The channel rotates and scales the signals (c), which are finally post-rotated at the receiver. This shows that the channel may transmit signals in three dimensions.

A. V-BLAST

A V-BLAST system consists of \(n_T \) transmit antennas operating at the same frequency band with synchronized symbol timing. All \(n_T \) antennas use the same signal constellation \(S \), and each transmitted symbol has average energy \(E_s \). The receiver consists of \(n_R \) antennas, where \(n_R \geq n_T \). Such a system is often referred to as an \((n_T,n_R) \) antenna array. The channel is modeled as a complex matrix \(H \) of size \(n_R \times n_T \), where each element \(h_{ij} \) of \(H \) is the complex transfer function from transmitter \(j \) to receiver \(i \). The channel is assumed to remain constant during the transmission of a block of \(L \) symbols, and then change in an independent fashion. A full description of the V-BLAST algorithm is given in [5].

B. Alamouti and DSTTD

An Alamouti space-time transmit diversity (STBC) [15] is a mapping of symbols to combinations of time intervals and antennas. This mapping may be represented by a table or a matrix, where each row corresponds to a transmit antenna and each column to a time interval. As an example, consider a
system with $n_T = 2$; the vector to be transmitted is $s = [s_1, s_2]$. The STBC given by

$$S = \begin{bmatrix} s_1 & -s_2^* \\ s_2 & s_1^* \end{bmatrix}$$ \hspace{1cm} \text{(11)}$$

specifies that, at the first symbol interval, antenna 1 transmits s_1 and antenna 2 transmits s_2. During the second interval, antenna 1 transmits $-s_2^*$ and antenna 2 transmits s_1^*.

The double space-time transmit diversity (DSTTD) system was proposed as a simple way to obtain transmit diversity gain and spatial multiplexing gain simultaneously. It consists of two Alamouti space-time transmit diversity (STTD) units. Alamouti’s STTD itself gives transmit diversity gain and its dual structure improves spatial multiplexing gain. In addition, it demands fewer receive antennas than transmit antennas, which may be beneficial in many practical applications.

C. Hybrid Codes

In general, the transmission process of a hybrid scheme can be divided into layers, like V-BLAST. However, in contrast to V-BLAST, in the hybrid case a layer may consist of a stream of symbols at the output of an STBC encoder (possibly Alamouti), which is transmitted by a group of antennas, or of an uncoded stream, which is transmitted from a single antenna. Based on this concept of layers, hybrid MIMO transceiver schemes combine pure diversity with pure spatial multiplexing schemes. With this idea, hybrid MIMO schemes achieve a compromise between spatial multiplexing and diversity transmission gains. The basic idea behind these structures is to combine array processing and space-time coding, as presented in [6].

III. CHANNEL CORRELATION

The uncorrelated channel model has large capacity [1]; however, in many real propagation environments the fades among antennas are not independent. When this is caused by insufficient spacing of antennas and relative displacement between transmitter and receiver, the phenomenon is commonly called spatial selectivity (SS); it is said that the channel is under spatial correlation (SC) conditions. Under these conditions, channel capacity is significantly degraded [2]. The channel model becomes

$$H_c = \left(R_H^{R_c} \right)^{1/2} H \left(R_H^{R_c} \right)^{1/2},$$ \hspace{1cm} \text{(12)}$$

where H is the uncorrelated channel matrix, $R_H^{R_c}$ is the transmitted correlation matrix, and $R_H^{R_c}$ is the received correlation matrix (see [3], [4] and references therein).

The properties of the correlation matrices depend on the antenna array topology; here, we consider linear arrays only. Furthermore, signal power depends on the transmitter’s signal angle of departure (ϕ^T) and the receiver’s angle of arrival (ϕ^R). This information is summarized in the system’s cross-Power Azimuth Spectrum $p(\varphi)$ (PAS), where φ is the array’s azimuthal angle. In this paper, we will evaluate the performance of space-time codes under Laplacian PAS correlation, which is given by

$$p(\varphi) = \frac{e^{-\frac{1}{2} |\varphi|}}{2k \left(1 - e^{-\frac{\pi^2}{4k}} \right)}$$ \hspace{1cm} \text{(13)}$$

for $-\pi \leq \varphi \leq \pi$.

IV. A HYBRID CODE: ZF LD STBC-VBLAST

In this section we present a hybrid code called ZF LD STBC-VBLAST. A simplified block diagram is shown in Figure 5. A single data stream is demultiplexed into n_L spatial layers, and each of them is mapped to the chosen constellation. Symbols are mapped to two different kinds of transmitters: n_S V-BLAST layers and n_B STBC encoders with $n_A = 2$ antennas each; therefore, $n_T = n_S + 2n_B$. It is assumed that $n_R \geq n_S + n_B$. In the transmission of one block, the symbol sequence is $s_1, s_2, \ldots, s_{n_B} = s_2(n_S + n_B)$. The mapping of symbols to antennas is shown in Table I. The power allocated to the V-BLAST encoder is $P_S = 2/n_{sym}$, while the power allocated to the Alamouti encoder is $P_A = P_S/2$. This allocation results in all symbols being transmitted with the same energy, which is the optimal strategy in the absence of channel side information (CSI) at the transmitter.

A. Hybrid Code Receiver Architecture

Under the assumption that channel side information is perfectly known at the receiver, the received signal may be...
written as:
\[
\begin{bmatrix}
y_1^{(1)} & y_1^{(2)} \\
y_2^{(1)} & y_2^{(2)} \\
\vdots & \vdots \\
y_n^{(1)} & y_n^{(2)}
\end{bmatrix} =
\begin{bmatrix} h_{1,1} & \cdots & h_{1,n_T} \\
\vdots & \ddots & \vdots \\
\vdots & & \ddots \\
h_{n_R,1} & \cdots & h_{n_R,n_T}
\end{bmatrix}
\begin{bmatrix} S_{spa}^* \\
S_A^*
\end{bmatrix} +
\begin{bmatrix} n_1^{(1)} \\
n_1^{(2)} \\
\vdots \\
n_n^{(1)}
\end{bmatrix}
\] (14)

or, in matrix notation,
\[
Y = HS + N.
\] (15)

Reformulating the system equation (14) as a linear dispersion code [8], we have:
\[
\begin{bmatrix}
y_1^{(1)} \\
\vdots \\
y_n^{(1)} \\
y_1^{(2)} \\
\vdots \\
y_n^{(2)}
\end{bmatrix} =
\begin{bmatrix} H_{spa} & H_A \\
\vdots & \vdots \\
H_{spa}^* \\
\vdots \\
H_{spa}^*
\end{bmatrix}
\begin{bmatrix} S_{spa} \\
S_A
\end{bmatrix} +
\begin{bmatrix} n_1^{(1)} \\
n_1^{(2)} \\
\vdots \\
n_n^{(1)} \\
n_n^{(2)}
\end{bmatrix}
\] (16)

The complete process of this transformation is explained in [14]. Equation (16) can be expressed in compact form as:
\[
Y_{LD} = H_{LD}S_{LD} + N_{LD},
\] (17)

where block matrix H_{LD} is a linear dispersion matrix. One block corresponds to the V-BLAST layer and the other to the STBC layers. The V-BLAST block H_{spa} is given by:
\[
H_{spa} =
\begin{bmatrix} H_{spa}^{1,1} & \cdots & H_{spa}^{1,n_S} \\
\vdots & \ddots & \vdots \\
H_{spa}^{n_R,1} & \cdots & H_{spa}^{n_R,n_S}
\end{bmatrix},
\] (18)

where
\[
H_{ij}^{spa} =
\begin{bmatrix} h_{i,j} & 0 \\
0 & -h_{i,j}^*
\end{bmatrix},
\] (19)

for $i = 1, 2, \ldots, n_R$ and $j = 1, 2, \ldots, n_S$. The STBC block H_A is itself a block matrix; it is given by:
\[
H_A =
\begin{bmatrix} H_A^{1,1} & \cdots & H_A^{1,n_B} \\
\vdots & \ddots & \vdots \\
H_A^{n_R,1} & \cdots & H_A^{n_R,n_B}
\end{bmatrix},
\] (20)

where each element of H_A is given by:
\[
H_{ij}^{A} =
\begin{bmatrix} h_{k,2B+n_S-1} & h_{k,2B+n_S} \\
h_{k,2B+n_S-1}^* & -h_{k,2B+n_S}^*
\end{bmatrix},
\] (21)

for $k = 1, 2, \ldots, n_R$ and $B = 1, 2, \ldots, n_B$. The matrix H_{ij}^{spa} is the portion of H_{LD} that links the j^{th} spatial antenna with the i^{th} receiver antenna. Likewise, H_{ij}^{A} links the B^{th} STBC block to the k^{th} receiver antenna.

The reformulation of equation (14) as equation (16) transforms the hybrid code into a simpler, equivalent, purely spatial system with $N_T = 2(n_S + n_B)$ transmit antennas and without distinction between the STBC and V-BLAST layers. This is illustrated in Figure 6.

By changing the number of layers and the modulation type, it is possible to arrange V-BLAST, DSTTD and hybrid schemes to have the same bandwidth efficiency. For instance, in Table II we show configurations that allow transmission of 12 bits per channel use.

Table II: Three space-time coding configurations with the same spectral efficiency: 12 bits per channel use.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>n_S</th>
<th>n_B</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBLAST</td>
<td>4</td>
<td>0</td>
<td>8-PSK</td>
</tr>
<tr>
<td>Hybrid</td>
<td>2</td>
<td>1</td>
<td>16-QAM</td>
</tr>
<tr>
<td>DSTTD</td>
<td>0</td>
<td>2</td>
<td>64-QAM</td>
</tr>
</tbody>
</table>

B. OSIC detection for hybrid codes

In the three configurations proposed above, we can use the same HC Sorted QR Decomposition detector. We first find $H_{LD} = Q_{LD}R_{LD}$, where Q_{LD} is unitary and R_{LD} is upper triangular. By multiplying the received signal Y_{LD} by Q_{LD}^H, we obtain a new receive vector given by $Y_{LD} = R_{LD}S_{LD} + N_{LD}$, which is fully equivalent, but can be solved with significantly reduced computational complexity through back-substitution. The decoding steps are presented in Figure 7.

Matrix H_{LD} is $2n_R \times n_T$. A direct application of Givens rotations to calculate its HC Sorted QR Decomposition would result in unacceptable complexity. However, we use the CORDIC algorithm [18] to calculate the QR matrix decomposition, as follows. A CORDIC block is a circuit that performs the following iteration on its two inputs, X and Y:
\[
X_{i+1} = X_i - m\sigma 2^{-i}Y_i
\] (22)
\[
Y_{i+1} = Y_i + \sigma 2^{-i}X_i
\] (23)

where $\sigma = -\text{sign}(Y)\text{sign}(X)$. Parameter m is provided by a control unit. If $m = 0$ then the block is said to be operating in vectoring mode, if $m = 1$ then it is on rotational mode. After a number of steps, the iteration converges to the desired result. A diagram of a CORDIC block is shown in Figure 8.

We define the notation used to indicate the two operations required to perform Givens rotations using the CORDIC algorithm. We assume that $Z = a + jb$ denotes a complex number:
Givens rotations over matrix H_m to obtain matrix $\overline{\Pi}_m$:

$$\overline{\Pi}_m = \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & r_{1,n_T} & \tilde{y}_{1,1} & \tilde{y}_{1,2} \\ r_{2,1} & r_{2,2} & \cdots & r_{2,n_T} & \tilde{y}_{2,1} & \tilde{y}_{2,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & r_{n_S,n_S} & \tilde{y}_{n_S,1} & \tilde{y}_{n_S,2} \\ 0 & 0 & \cdots & 0 & \tilde{y}_{k,k} & \tilde{y}_{k,k} \\ 0 & 0 & \cdots & 0 & \tilde{y}_{k+1,k} & \tilde{y}_{k+1,k} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \tilde{y}_{n_R,k} & \tilde{y}_{n_R,k} \\ \tilde{y}_{n_R,n_T} & \tilde{y}_{n_R,n_T} \end{bmatrix},$$

(25)

where $k = n_S + 1$. In this process, we also produce vector $order$ which specifies the detection order of the spatial layers. The process applied in this stage is shown as Algorithm (1).

Algorithm 1 Spatial Decomposition of HC Sorted QR using Givens Rotations

1: INPUT: $H_{mR}^{n_R \times n_T + L}$, L, N_T, n_S.
2: OUTPUT: $\overline{\Pi}_m$ and $order$.
3: $\overline{\Pi}_m = H_m$, $order = \{1 : 1 : N_T\}$.
4: for $i = 1$ to n_S do
5: $k = \text{argmin}_{j = i:n_S} \| (\overline{\Pi}_m(:,j)) \|_2$
6: exchange columns i and k of $\overline{\Pi}_m$.
7: end for
8: for $l = i + 1$ to n_R do
9: for $m = n_T + 2 : 2$ to $n_T + L$ do
10: $\overline{\Pi}_m(l,m) = -\overline{\Pi}_m(l,1)$
11: end for
12: end for
13: for $l = i$ to n_R do
14: $[x_r, \theta] = \text{V}(\text{Re}(\overline{\Pi}_m(l,i)), \text{Im}(\overline{\Pi}_m(l,i)))$
15: $\overline{\Pi}_m(l,i) = x_r + j \theta$
16: end for
17: for $m = i + 1$ to $n_R + L$ do
18: $[x_r, x_i] = \text{Re}(\overline{\Pi}_m(l,m)), \text{Im}(\overline{\Pi}_m(l,m))$
19: $\overline{\Pi}_m(l,m) = x_r + j x_i$
20: end for
21: end for
22: for $l = i + 1$ to n_R do
23: for $m = n_T + 2 : 2$ to $n_T + L$ do
24: $\overline{\Pi}_m(l,m) = -\overline{\Pi}_m(l,1)$
25: end for
26: end for
27: for $l = n_R : -1 : i + 1$ do
28: $[x_r, \phi] = \text{V}(\text{Re}(\overline{\Pi}_m(l-1,i)), \text{Re}(\overline{\Pi}_m(l-1,i)))$
29: $\overline{\Pi}_m(l-1,i) = x_r + j \phi$
30: end for
31: end for
32: for $m = i + 1$ to $n_R + L$ do
33: $[x_r, x_i] = \text{Re}(\overline{\Pi}_m(l-1,m)), \text{Im}(\overline{\Pi}_m(l-1,m))$
34: $[x_r, x_i] = \text{Re}(\overline{\Pi}_m(l-1,m)), \text{Im}(\overline{\Pi}_m(l-1,m))$
35: end for
36: end for
37: end for

We apply a series of orthogonal transformations Θ using

$$H_m = \begin{bmatrix} h_{1,1} & h_{1,2} & \cdots & h_{1,n_T} & y_{1,1} & y_{1,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ h_{n_R,1} & h_{n_R,2} & \cdots & h_{n_R,n_T} & y_{n_R,1} & y_{n_R,2} \end{bmatrix}.$$

(24)

Then, we select the first n_S rows of $\overline{\Pi}_m$ to build the
matrices R^{spa} and Y^{spa}, which have the following form:

$$R^{spa} = \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & r_{1,n_T} \\ 0 & r_{2,2} & \cdots & r_{2,n_T} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{n_S,n_T} \end{bmatrix}, \tag{26}$$

$$\hat{Y}^{spa} = \begin{bmatrix} \hat{y}_{1,1} & \hat{y}_{1,2} \\ \vdots & \vdots \\ \hat{y}_{n_S,1} & \hat{y}_{n_S,2} \end{bmatrix}. \tag{27}$$

The matrices R^{spa} and \hat{Y}^{spa} represent the contribution of the spatial layers in the hybrid scheme.

In the second stage of the QR decomposition, dedicated to the diversity layers, the non-normalized elements $\hat{h}_{i,j}$ in equation (25) are used to build the matrix H^{ala}_{div}, which has the following structure (assuming $k = n_S + 1$):

$$H^{ala}_{div} = \begin{bmatrix} \hat{h}_{k,k} & \hat{h}^*_{k,k+1} & \cdots & \hat{h}^*_{k,n_T-1} \\ \hat{h}_{k+1,k} & \hat{h}^*_{k+1,k+1} & \cdots & \hat{h}^*_{k+1,n_T-1} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{h}_{n_R,k} & \hat{h}^*_{n_R,k+1} & \cdots & \hat{h}^*_{n_R,n_T-1} \end{bmatrix} \begin{bmatrix} \hat{y}_{k,1} & \hat{y}_{k,2} \\ \vdots & \vdots \\ \hat{y}_{n_R,1} & \hat{y}_{n_R,2} \end{bmatrix}. \tag{28}$$

Once the matrix H^{ala}_{div} is built, the next step is to apply the Sorted QR decomposition on it. This calculation may be carried out using Algorithm 2 below. The matrices R^{div} and \hat{Y}^{div} generated in this part of the process represent the contribution of diversity layers in the HC Sorted QR decomposition. The matrices R_{LD} and \hat{Y}_{LD} are generated from the matrices R^{spa}, R^{div}, \hat{Y}^{spa} and \hat{Y}^{div}. The construction process is described in Algorithm 3. Once the matrices R_{LD} and \hat{Y}_{LD} are generated, the detection of the received symbols is carried out according to the procedure described in section IV-B.

V. RESULTS

In this section we compare the performance of VBLAST, DSTTD and the Hybrid code. In all cases, we consider four antennas in the transmitter and four in the receiver. Also, the modulation used in each case has been adjusted so that 12 bits are transmitted per channel use, as described in Table II above.

In Figure 9 we compare the bit error rate (BER) of the three codes. It can be observed that the Hybrid code proposed here outperforms the other two codes. It is also important to note that VBLAST’s BER vs SNR curve has constant slope for high SNR. This means that VBLAST has no ability to exploit channel diversity. This is consistent with its spatial-multiplexing nature. The other two codes, by repeating data over different time and space channels, do take advantage of the channel’s diversity.

In Figure 10, we compare the BER performance of the Hybrid code when the receiver’s QR decomposition is implemented using the Modified Gram-Schmidt algorithm, and also when it is implemented using CORDIC. It can be seen that seven CORDIC iterations are enough to achieve the same
Algorithm 3 Procedure to obtain R_{LD} and \tilde{Y}_{LD} from R^{spa}, R^{div}, \tilde{Y}^{spa} and \tilde{Y}^{div}

1: INPUT: R^{spa}, R^{div}, \tilde{Y}^{spa}, \tilde{Y}^{div}, n_S, n_B.
2: OUTPUT: R_{LD}, \tilde{Y}_{LD}.
3: Let $R_{LD}^{2\times(n_S+n_B)} = 0$.
4: Build R_{LD}^{spa} and R_{LD}^{div}
5: \textbf{for} $\text{row}=1$ \textbf{to} n_S \textbf{do}
6: \hspace{1em} \textbf{for} $\text{col}=2n_S+1$ \textbf{do}
7: \hspace{2em} $R_{LD}^{spa}(\text{row,}\text{col}) = R_{LD}^{spa}(1,2)+n_S$
8: \hspace{2em} $R_{LD}^{div}(\text{row,}\text{col+1}) = R_{LD}^{div}(1,2)+n_S$
9: \hspace{2em} $R_{LD}^{spa}(\text{row+1,}\text{col}) = R_{LD}^{spa}(1,2)+n_S$
10: \hspace{2em} $R_{LD}^{div}(\text{row+1,}\text{col+1}) = R_{LD}^{div}(1,2)+n_S$
11: \hspace{1em} \textbf{end for}
12: \textbf{end for}
13: \textbf{for} $\text{row}=n_S+1$ \textbf{to} n_B+1 \textbf{do}
14: \hspace{1em} $R_{LD}^{spa}(\text{row,}\text{col+2}) = R_{LD}^{spa}(1,2)+n_S$
15: \hspace{1em} $R_{LD}^{div}(\text{row,}\text{col+2}) = R_{LD}^{div}(1,2)+n_S$
16: \textbf{end for}
17: \textbf{for} $\text{col}=2n_S+1$ \textbf{do}
18: \hspace{1em} $R_{LD}^{spa}(\text{row,}\text{col}) = R_{LD}^{spa}(1,2)+n_S$
19: \hspace{1em} $R_{LD}^{div}(\text{row,}\text{col+1}) = R_{LD}^{div}(1,2)+n_S$
20: \hspace{1em} $R_{LD}^{spa}(\text{row+1,}\text{col}) = R_{LD}^{spa}(1,2)+n_S$
21: \hspace{1em} $R_{LD}^{div}(\text{row+1,}\text{col+1}) = R_{LD}^{div}(1,2)+n_S$
22: \hspace{1em} \textbf{end for}
23: Build vector \tilde{Y}_{LD}
24: \textbf{for} $\text{row}=1$ \textbf{to} n_S \textbf{do}
25: \hspace{1em} $\tilde{Y}_{LD}^{spa}(\text{row,}1) = \tilde{Y}^{spa}(k,1)$
26: \hspace{1em} $\tilde{Y}_{LD}^{div}(\text{row,}1) = \tilde{Y}^{div}(k,1)$
27: \hspace{1em} \textbf{end for}
28: \textbf{for} $\text{row}=n_S+1$ \textbf{to} n_B+1 \textbf{do}
29: \hspace{1em} $\tilde{Y}_{LD}^{spa}(\text{row,}1) = \tilde{Y}^{spa}(k,2)$
30: \hspace{1em} $\tilde{Y}_{LD}^{div}(\text{row,}1) = \tilde{Y}^{div}(k,2)$
31: \hspace{1em} \textbf{end for}
32: \textbf{for} $\text{row}=n_S+1$ \textbf{to} n_B+1 \textbf{do}
33: \hspace{1em} $\tilde{Y}_{LD}^{spa}(\text{row,}1) = \tilde{Y}^{spa}(k,2)$
34: \hspace{1em} $\tilde{Y}_{LD}^{div}(\text{row,}1) = \tilde{Y}^{div}(k,2)$
35: \hspace{1em} \textbf{end for}
36: \textbf{end for}

performance. The relevance of this result is that it is essential when implementing the receiver in digital hardware.

Finally, we present the effect of correlation on the performance of the Hybrid code. In Figure 11, we show that there is a severe loss (around 5dB) of performance in the case of Laplacian correlation, compared to the uncorrelated channel. This is to be expected, since channel correlation means that symbols transmitted at different times and over different antennas are, however, still subject to similar conditions. This has the effect of reducing the code’s diversity gain. Note, however, that CORDIC is still able to match the performance of the MGS algorithm. In some cases (for instance, VBLAST), the number of iterations required increases when correlation is present.

VI. CONCLUSIONS

We have presented the theory behind space-time codes and their potential for increasing data rate and reliability in

Fig. 9: Bit-error rate comparison between DSTTD, hybrid, and V-BLAST space-time codes. The hybrid code described here is the better performer.

Fig. 10: A comparison between code performance when the QR decomposition in the receiver is performed using the modified Gram-Schmidt algorithm or with CORDIC. Here, the CORDIC performs seven rotations, which are enough to reach the best performance.
wireless systems. We have presented a hybrid code that uses V-BLAST and Alamouti codes at the same time and presents better performance than both of them, at the same data rate. We have also shown that channel correlation may significantly reduce the performance of these codes, and it remains a challenge in their practical operation.

The close relationship between hybrid space-time codes and linear dispersion codes has been established. The proposed approach has several advantages: from the point of view of linear dispersion codes a new way to design codes significantly easier than the original approach in [8] has been introduced. From the perspective of hybrid systems, a performance enhancement can be obtained without increasing the decoder's complexity neither sacrificing the spectral efficiency. The ZF enhancement can be obtained without increasing the decoder's complexity on the HC Sorted QR algorithm.

REFERENCES

