

Hybrid Quantum Systems Composed of Superconducting Qubits, Nanomechanics, and Transmission Line Metamaterials

Matthew Lahaye

Syracuse University

Hybrid quantum interconnects and processor components are likely to play an important role in future scalable quantum communication and computation networks. In this talk, I will outline several nascent ideas for a new type of hybrid system, composed of mechanical elements, superconducting metamaterials, and superconducting qubits, which could be applicable to quantum transduction and memory functions. Before introducing these new ideas, I will start with a summary of recent incipient work at Syracuse that has inspired them. My summary will include a brief overview of efforts in the LaHaye group to investigate interactions between a superconducting transmon qubit and UHF nanomechanical element¹; as well, I will highlight work conducted concomitantly and independently by the Plourde group to study the mode structure² and cQED interactions of a superconducting metamaterial transmission line. The talk will then conclude with an overview of related ideas to utilize qubit-coupled nanoresonator architectures as platforms for quantum simulation^{3,4}.

- [1] F. Rouxinol, Y. Hao, F. Brito, A.O. Caldeira, E.K. Irish, M.D. LaHaye. Nanotechnology 27, 36 (2016).
- [2] H. Wang, A.P. Zhuravel, S. Indrajeet, Bruno G. Taketani, M.D. Hutchings, Y. Hao, F. Rouxinol, F.K. Wilhelm, M. LaHaye, A.V. Ustinov, B.L.T. Plourde. arXiv:1812.02579 (Dec. 06, 2018).
- [3] J. Lozada-Vera, A. Carrillo, O. P. de Sá Neto, J. Khatibi Moqadam, M. D. LaHaye, M. C. de Oliveira. EPJ Quantum Technology 3, 1 (2016).
- [4] F. Tacchino, A. Chiesa, M. D. LaHaye, S. Carretta, and D. Gerace. Phys. Rev. B 97, 214302 (2018).