Minh Pham Headshot

Minh Pham

Assistant Professor
School of Mathematical Sciences
College of Science

585-475-6529
Office Location

Minh Pham

Assistant Professor
School of Mathematical Sciences
College of Science

Education

BS, Bucknell University, Ph.D., Rutgers University

585-475-6529

Currently Teaching

STAT-773
3 Credits
This course is designed to provide the student with a solid practical hands-on introduction to the fundamentals of time series analysis and forecasting. Topics include stationarity, filtering, differencing, time series decomposition, time series regression, exponential smoothing, and Box-Jenkins techniques. Within each of these we will discuss seasonal and nonseasonal models.
STAT-305
3 Credits
This course covers regression techniques with applications to the type of problems encountered in real-world situations. It includes use of the statistical software SAS. Topics include a review of simple linear regression, residual analysis, multiple regression, matrix approach to regression, model selection procedures, and various other models as time permits.
STAT-511
3 Credits
This course is an introduction to two statistical-software packages, SAS and R, which are often used in professional practice. Some comparisons with other statistical-software packages will also be made. Topics include: data structures; reading and writing data; data manipulation, subsetting, reshaping, sorting, and merging; conditional execution and looping; built-in functions; creation of new functions or macros; graphics; matrices and arrays; simulations; select statistical applications.
STAT-611
3 Credits
This course is an introduction to two statistical-software packages, SAS and R, which are often used in professional practice. Some comparisons with other statistical-software packages will also be made. Topics include: data structures; reading and writing data; data manipulation, subsetting, reshaping, sorting, and merging; conditional execution and looping; built-in functions; creation of new functions or macros; graphics; matrices and arrays; simulations; select statistical applications.
MATH-251
3 Credits
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications.