A Special Thanks To Our Sponsors...

From The MCSL Family

Andrew W. Mellon Foundation
Canon
CEIS - NYSTAR
Color Curve Systems
Eastman Kodak
Epson
Fuji Photo Film
Fuji Xerox
IBM
Matsushita Research Institute - Panasonic
Museum of Modern Art, New York

National Gallery of Art, Washington
Oki Data
Pixel Physics
Seiko Epson
Sony
Texas Instruments
Toppan
Xerox
X-Rite

Contents

Director's Reflection1
MCSL's Mission3
Research Areas
 Color Measurement & Science5
 Image Appearance and Quality7
 Spectral Color Reproduction9
 Color Science for Cultural Heritage11
MCSL Students, Alumni and Visiting Scientists12
MCSL 2002 Publications13
MCSL Faculty and Staffback inside cover
We’ve never been known to sit still in the Munsell Color Science Laboratory and this year is no exception as we once again unveil a new format for our annual report. With the growing importance of the internet as a publishing and communications medium, we have decided to rely more heavily on our web pages to document much of the historical information that we have traditionally recorded in our annual reports. Thus, this report is much leaner than those of the past and simply highlights the activities of the lab to remind our old friends what we’ve been up to and to introduce our new friends to the exciting place that is MCSL. Please visit our general web page <www.cis.rit.edu/mcsl> and our annual report page <www.cis.rit.edu/mcsl/annual> for additional current and historical information about the lab.

As you will see throughout this report, 2002 has been another busy and exciting year at MCSL. I hope you enjoy reading about our activities and join us in plans for an even better 2003. 2003 represents the 20th anniversary of the founding of MCSL and we intend to celebrate it in style with an open house/reception in conjunction with the IS&T PICS conference in Rochester in May, 2003. We hope you can come by and celebrate with us.

As we reach the milestone of our 20th anniversary, we are deeply contemplating our roots and our mission as outlined in the four founding objectives of MCSL. This report is designed around those four objectives and I hope you agree with me that we are fulfilling them and intend to focus even more sharply on them in the coming years. Please stay tuned as I think the lab has a very exciting and promising future. In addition to refocusing on our objectives, we have streamlined and integrated the description of our research program into four research themes: Color Measurement & Science, Image Appearance & Quality, Spectral Color Reproduction, and Color Science for Cultural Heritage.

MCSL is not just a facility or a program. It is really a collection of people that define the laboratory. I must say that I am very lucky to work with such a strong, creative, intelligent, and hard-working group of students, staff, and faculty. I want to thank each one of them for making the lab the success that it is and I look forward to ongoing collaborations.

Lastly, a big thank you to all of MCSL’s sponsors, without which we could not even begin to fulfill those four objectives.

Mark D. Fairchild
Director, Munsell Color Science Laboratory
Munsell Color Science Laboratory

The RIT Munsell Color Science Laboratory (MCSL) was established in 1983 after the Munsell Color Foundation, Inc. transferred its assets to RIT to create an endowment.

The aims and purposes of the Munsell Foundation as stated in its bylaws were “... to further the scientific and practical advancement of color knowledge and, in particular, knowledge relating to standardization, nomenclature and specification of color, and to promote the practical application of these results to color problems arising in science, art, and industry.”

Since then MCSL has been performing internationally-recognized research in color appearance models, image quality, data-visualization, color-tolerance psychophysics, spectral-based image capture, spectral color rendering and computer graphics, archiving and reproduction of artwork, and other areas of color science and color measurement.

Our Objectives

Following the example set by our founders, the guiding objectives of MCSL are ...

(1) To provide undergraduate and graduate education in color science

(2) To carry on applied and fundamental research

(3) To facilitate spectral, colorimetric, photometric, spatial, and geometric measurements at the state-of-the-art, and

(4) To sustain an essential ingredient for the success of the first three - namely, liaison with industry, academia and government.
Our Mission Is Education

MCML educates graduate students and industry employees both nationally and internationally. MCML has been providing high quality state-of-the-art education and research for 20 years.

Master’s and Ph.D. Degrees

MCML offers the only Master’s degree program in Color Science in the country and has over 50 alumni in the field worldwide. MCML graduates are in high demand and have accepted industrial positions in electronic imaging, color instrumentation, colorant formulation and basic and applied research. MCML students complete Master’s and Ph.D. degrees through the program within the Center for Imaging Science.

Visiting Scientist Program

For more than a decade MCML has been hosting industrial visiting scientists. The scientists spend 1-2 years in residence at MCML and work on fundamental research problems of interest to their company and MCML researchers.

Collaborative Research

Fundamental to our educational mission is collaborative research with industry on important, relevant, and intriguing problems of color science and technology.

Meeting Our Objectives

“education in color science”
&
“liaison with industry, academia and government”

For More Details visit us at:

www.cis.rit.edu/mcsl
MCSSL was founded as a strong, independent, laboratory for color measurements at the state-of-the-art. We are happy to report that we have maintained those capabilities in support of our other research themes and returned color measurement as a research theme itself. Dave Wyble has had a key role in this revitalization and we look forward to more measurement research from Dave and others in the coming years.

We are often asked to prepare book chapters or presentations on the general concepts of color measurement that form the foundations of our other research themes.19,30,32
2002 publications in this area included a series of general papers on various problems in the measurement of displays and materials and characterization of the instruments themselves.8,34,53,55 One important application of our color measurement and color science expertise has been in the practical and theoretical analysis and specification of imaging systems.10,37,38

Finally, we continue to perform research on the fundamental basis of colorimetry, the color matching functions,50,51 and more advanced applications of colorimetry such as the development of industrial color difference equations.5,39
Image Appearance and Quality

Image appearance and quality was a very active area of MCSL research during 2002 with three students completing Color Science M.S. theses on related topics. Jason Babcock completed his thesis on eye-tracking observers during various color image perception psychophysical tasks.1-3 Anthony Calabria wrote a thesis on the perception and modeling of perceived image contrast.13,14 And Scot Fernandez wrapped up his degree with a thesis on preferences in color reproduction and the examination of cross-cultural differences in those preferences.23-25 All three graduates are continuing to work on their research and publish additional results.

General research on color appearance models has been a mainstay of MCSL for over a decade. This work continued with various general presentations and chapters on the topic as well as contributions to ongoing CIE work leading to the derivation of CIECAM02.15,18,19,30,36,40
Our own research on color appearance, coordinated by Mark Fairchild, has evolved toward more complex visual stimuli and the derivation of an image appearance model, known as iCAM, that automates the process of computing spatial effects on image appearance and shows promise for useful application in image quality metrics, image rendering, and digital video.16,17,20-22 Closely related to our image appearance modeling work has been the dissertation research of Garrett Johnson on the development of image difference metrics that could form the basis of a new type of image quality metric.28,29,31,32 These two bodies of work are converging into a single image appearance model for specifying appearance, difference, and quality. We expect this to be major research focus in the coming years.

Lastly, a variety of psychophysical studies were published in 2002. These include Ethan Montag’s work on multidimensional scaling of image quality,35 cross-media reproduction,41 the Helmholtz-Kohlrausch effect,49 and spectral image quality.54
Spectral Color Reproduction

Research on spectral color reproduction has definitely caught the interest of a number of MCSL researchers. In 2002 Roy Berns published an overview of the area setting the stage for other MCSL contributions.4 One application of spectral imaging has been the identification of pigments or other materials within imaged objects (such as paintings).7,26,27 This can be thought of as analytical spectroscopy on a pixel-wise basis. Shuxue Quan completed his Ph.D. dissertation on the evaluation and optimization of spectral responsivities for color cameras and moved on to a career with the research sponsor, Sony.42-44 Xiaoyun Jiang continued work on her dissertation examining various techniques for the estimation of illumination spectral power distributions and/or color from captured images.33,34

“Studying at the Munsell Lab has truly been an enjoyable and challenging experience. The dedicated professors and staff of the color science program have given me the confidence and ability to apply what I have learned in class to real world problems.” Ed Hattenberger, MCSL graduate student.
We expect theoretical and applied research on spectral imaging to continue to grow as an MCSL research theme in the coming years. Staff scientists Francisco Imai and Lawrence Taplin are key members of the teams developing spectral image capture and printing systems.

While spectral imaging is certainly an interesting topic for academic research, there are serious technological hurdles to be overcome to make the techniques applicable in practical situations. Mitch Rosen has been working with Noboru Ohta on the formulation and implementation of data-efficient techniques for spectral imaging to facilitate applications as part of his Ph.D. research. They have also been applying their results to spectral video imaging and printing. Qun Sun, also finishing up his Ph.D. dissertation has been looking at image capture techniques for spectral portraiture as well as probing image quality questions with respect to spectral imaging.
In the past year, work was published on the general application of color science to painting, specific applications of spectral imaging to artwork, and the optical analysis of the effects of various varnishes on the appearance of paintings. These publications only scratch the surface of ongoing research on application of color science and spectral imaging to the measurement, analysis, conservation, and archiving of our cultural heritage.
One application of MCSL spectral imaging techniques has recently grown to the level of becoming a research theme on its own, color science for cultural heritage. Roy Berns’ long-time interest in art conservation and archiving has resulted in significant research funding from the Andrew W. Mellon Foundation, the Museum of Modern Art, New York, and the National Gallery, Washington, D.C. to expand and develop spectral imaging techniques for museum applications.

This fascinating area of research will certainly grow as an MCSL theme in the near-term and long-term future. To learn more and keep informed visit:

www.Art-SI.org
MCSL Students

2002
Arturo Aguirre, M.S., Color Science
Jason Babcock, M.S., Color Science
Anthony Calabria, M.S., Color Science
Scot Fernandez, M.S., Imaging Science
Shuxue Quan, Ph.D., Imaging Science
2001
Jason Gibson, M.S., Color Science
Alexei Krasnoselsky, M.S., Color Science
Lawrence Taplin, M.S., Color Science
Su Ju Park, M.S., Color Science
Michael Sanchez, M.S., Imaging Science
2000
Barbara Ulreich, M.S., Imaging Science
2002
Sergio Gonzalez, M.S., Color Science
Sharron Henley, M.S., Color Science
Patrick Igoe, M.S., Imaging Science
Susan Lubecki, M.S., Color Science
Richard Suorsa, M.S., Color Science
1999
Gus Braun, Ph.D., Imaging Science
Barbara Grady, M.S., Color Science
Katherine Loj, M.S., Color Science
Jonathan Phillips, M.S., Imaging Science
Mark Reiman, M.S., Color Science
Mark Shaw, M.S., Color Science
Di-Yuan Tzeng, Ph.D., Imaging Science
Joan Zanghi, M.S., Color Science
1998
Scott Bennett, M.S., Color Science
Fritz Ebner, Ph.D., Imaging Science
Garrett Johnson, M.S., Color Science
Naoya Katoh, M.S., Color Science
Dave Wyble, M.S., Color Science
1997
Peter Burns, Ph.D., Imaging Science
Brian Hawkins, M.S., Color Science
Christopher Hauf, M.S., Color Science
Alex Vaysman, M.S., Imaging Science
1996
Karen Braun, Ph.D., Imaging Science
Cathy Daniels, M.S., Color Science
Yue Qiao, M.S., Imaging Science
Jack Rahill, M.S., Imaging Science
Hae Kyung Shin, M.S., Imaging Science
1995
Richard Alfvin, M.S., Color Science
Seth Ansell, M.S., Color Science
Sue Farnand, M.S., Imaging Science
1994
Audrey Lester, M.S., Color Science
Jason Peterson, M.S., Imaging Science
James Shyu, M.S., Color Science
Debra Seitz Vent, M.S., Imaging Science
1993
Nathan Moroney, M.S., Color Science
Elizabeth Pirrotta, M.S., Color Science
Mitchell Rosen, M.S., Imaging Science
1992
Mark Gorzynski, M.S., Imaging Science
Taek Kim, M.S., Imaging Science
Rich Riffel, M.S., Imaging Science
Brian Rose, M.S., Color Science
Michael Stokes, M.S., Color Science
1991
Yan Liu, M.S., Color Science
Ricardo Motta, M.S., Imaging Science
Amy North, M.S., Color Science
Greg Snyder, M.S., Imaging Science
1989
Mitch Miller, M.S., Imaging Science
Kelvin Peterson, M.S., Imaging Science
Lisa Reniff, M.S., Color Science
1987
Denis Daoust, M.S., Imaging Science
Wayne Farrell, M.S., Imaging Science
1986
Mark Fairchild, M.S., Imaging Science

Alumni

Visitng Scientists

Takayuki Hasegawa, Toppan Printing Co., Ltd.
Nobuhito Matsushiro, Oki Data Corporation
Takayuki Ogasahara, Canon Inc.
2002 MCSL Publications

The following is a list (alphabetical by first author) of all the thesis, journal, and conference publications authored by MCSL students, faculty, and staff that either appeared in 2002 or have been accepted for publication. Categorization of each publication into current MCSL research themes is given by reference number on page 15.

49. M. Sanchez and M.D. Fairchild, Lightness appearance matching model, and data, for the re-mapping of chromatic video images to their corresponding NTSC gray image lightness appearance, AIC Color 01, SPIE Vol. 4421, Rochester, 607-610 (2002).

MCSL Research Themes

Image Appearance and Quality
1-3, 13-25, 28-32, 35, 36, 40, 41, 49, 54

Spectral Color Reproduction
4, 7, 26, 27, 33, 34, 42-48, 52-54

Color Science for Cultural Heritage
6, 7, 9, 11, 12, 26

Color Measurement and Science
5, 8, 10, 19, 30, 32, 34, 37-39, 50, 51, 53, 55
Opportunities

MS Color Science Applicants
Scholarships and Assistantships available for qualified Color Science M.S. and Ph.D. applicants - up to $39,000/per year.

Color Science graduates are in high demand. Many more job opportunities are available than graduates.

Industry
Join MCSL’s Visiting Scientist Program and experience the unique family atmosphere where research and education flourish.

Attend our Summer School of Industrial Short Courses. A succession of two-day courses offered annually in June.

Sponsor research projects on topics of mutual interest in color and color imaging.

Benefactors
Consider making equipment and monetary donations to support our educational mission.

Visit Us For Further Details:
www.cis.rit.edu/mcsl
MCSL Faculty and Staff

Roy S. Berns, Richard S. Hunter Professor, (585) 475-2230, berns@cis.rit.edu
Ph.D., Color Science, Rensselaer Polytechnic Institute, 1983.
M.S., Textile Science, University of California at Davis, 1978.
B.S., Textile Science, University of California at Davis, 1976.

Colleen M. Desimone, Outreach Coordinator, (585) 475-6783, desimone@cis.rit.edu

Mark D. Fairchild, Director and Professor, (585) 475-2784, mdf@cis.rit.edu

Valerie Hemink, Staff Assistant, (585) 475-7189, val@cis.rit.edu

Francisco Imai, Senior Color Scientist, (585) 475-7842, imai@cis.rit.edu
Ph.D., Imaging Science, Chiba University, 1997.

Garrett Johnson, Color Scientist, (585) 475-4923, garrett@cis.rit.edu

Ethan D. Montag, Assistant Professor, (585) 475-5096, montag@cis.rit.edu
Ph.D., Experimental Psychology, University of California at San Diego, 1991.
M.S., Experimental Psychology, University of California at San Diego, 1986.

Noboru Ohta, Xerox Professor, (585) 475-7061, noboru.ohta@cis.rit.edu
M.S., Physical Chemistry, Tokyo University, 1968.
B.S., Chemistry, Tokyo University, 1966.

Mitchell Rosen, Senior Color Scientist, (585) 475-7691, rosen@cis.rit.edu

Lawrence Taplin, Color Scientist, (585) 475-7188, taplin@cis.rit.edu
B.S., Computer Science, University of Delaware, 1996.

Dave Wyble, Color Scientist, (585) 475-7310, wyble@cis.rit.edu