Integrals Involving Products of Trig Functions

Three special cases where trigonometric substitutions can be utilized to evaluate an integral:

Case #1
\[\int \sin^n x \cos^m x \, dx \]

(with n or m odd)

a. If \(m \) is odd: make the substitution \(u = \sin x \). Then \(du = \cos x \, dx \). This uses one factor of \(\cos x \). The remaining even factors of \(\cos x \) can be converted to a function of \(\sin x \) by the identity: \(\cos^2 x = 1 - \sin^2 x \). The integral then has the form:

\[\int \sin^n x (1 - \sin^2 x)^k \, \cos x \, dx = \int u^n (1 - u^2)^k \, du \]

b. If \(n \) is odd: make the substitution \(u = \cos x \). Then \(du = -\sin x \, dx \). This uses one factor of \(\sin x \). The remaining even factors of \(\sin x \) can be converted to a function of \(\cos x \) by the identity: \(\sin^2 x = 1 - \cos^2 x \). The integral then has the form:

\[-\int \cos^m x (1 - \cos^2 x)^k \, \sin x \, dx = -\int u^m (1 - u^2)^k \, du \]

Case #2
\[\int \sin^n x \cos^m x \, dx \]

(with both \(n \) and \(m \) even)

Use the following identities repeatedly until an integrand involving only constants and cosine terms is obtained.

\[\sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x \quad \text{and} \quad \cos^2 x = \frac{1}{2} + \frac{1}{2} \cos 2x \]
Case #3
\[\int sec^n x \tan^m x dx \]

b. If n is even write \(sec^{n-2}x \) as a function of \(\tan x \) using the identity
\(\sec^2 x = \tan^2 x + 1 \). Then make the substitution \(u = \tan x \). The remaining factor
\(\sec^2 x \) becomes \(du \).
c. If m is odd write \(\tan^{m-2} x \) as a function of \(\sec x \) using the identity
\(\tan^2 x = \sec^2 x - 1 \). Make the substitution \(u = \sec x \) using one factor of \(\sec x \) and using the remaining
factor of \(\tan x \) as \(du = \sec x \tan x dx \).
d. If \(n=0 \), write
\[\int tan^m x dx = \int tan^{m-2} x(tan^2 x)dx = \int tan^{m-2} x(sec^2 x - 1)dx = \]
\[\int tan^{m-2} x(sec^2 x)dx - \int tan^{m-2} x dx \]

Integrate the first integral and repeat above process for \(\int tan^{m-2} x dx \)
e. In none of the above cases apply; try rewriting the integrand in terms of sines and
cosines or use integration by parts.

NOTE: For integrals involving powers of the cotangent and cosecant, follow the strategies of
step 3 making use of the identity \(\csc^2 x = 1 + \cot^2 x \)

EXAMPLES:

1. Evaluate: \(\int \sin^2 x \cos^5 x dx \)

Solution:

Since \(m \) is odd, let \(u = \sin x \). Then \(du = \cos x dx \).

Write:

\[\int \sin^2 x \cos^5 x dx = \int \sin^2 x \cos^4 x (\cos x) dx = \]
\[= \int \sin^2 x (\cos^2 x)^2 (\cos x) dx = \int \sin^2 x (1 - \sin^2 x)^2 (\cos x) dx = \]
\[= \int u^2 (1 - u^2)^2 du = \int u^2 (1 - 2u^2 + u^4) du = \int (u^2 - 2u^4 + u^6) du = \]
\[= \frac{u^3}{3} - \frac{2u^5}{5} + \frac{u^7}{7} + C = \frac{\sin^3 x}{3} - \frac{2\sin^5 x}{5} + \frac{\sin^7 x}{7} + C \]

2. Evaluate: \(\int \cos^4 x dx \)
Solution:

Since m and n are both even (with n=0), replace \(\cos^4 x \) by \(\left(\frac{1}{2} + \frac{1}{2} \cos 2x \right)^2 \)

Write:

\[
\int \cos^4 x \, dx = \int \left(\frac{1}{2} + \frac{1}{2} \cos 2x \right)^2 \, dx = \int \left(\frac{1}{4} + \frac{1}{2} \cos 2x + \frac{\cos^2 2x}{4} \right) \, dx
\]

Replace \(\cos^2 2x \) by \(\left(\frac{1}{2} + \frac{1}{2} \cos 4x \right) \)

\[
\begin{align*}
= \int \left[\frac{1}{4} + \frac{1}{2} \cos 2x + \frac{1}{4} \left(\frac{1}{2} + \frac{1}{2} \cos 4x \right) \right] \, dx = \int \left(\frac{1}{4} + \frac{\cos 2x}{2} + \frac{1}{8} + \frac{1}{8} \cos 4x \right) \, dx = \\
= \int \left(\frac{3}{8} + \frac{\cos 2x}{2} + \frac{\cos 4x}{8} \right) \, dx = \frac{3}{8} \int dx + \frac{1}{4} \int (\cos 2x)(2) \, dx + \frac{1}{32} \int (\cos 4x)(4) \, dx = \\
= \frac{3}{8} x + \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C
\end{align*}
\]

3. Evaluate: \(\int \frac{\tan^3 x}{\sqrt{\sec x}} \, dx \)

Solution:

Since m is odd, use the identity \(\tan^2 x = \sec^2 x - 1 \)

Write:

\[
\int \frac{\tan^3 x}{\sqrt{\sec x}} \, dx = \int \sec^{\frac{1}{2}} x \tan^3 x \, dx = \int \sec^{\frac{1}{2}} x (\tan^2 x) (\tan x) \, dx
\]

Replace \(\sec^{\frac{1}{2}} x \) by \(\sec^{\frac{1}{2}} x \sec x \)

\[
\begin{align*}
\int \sec^{\frac{1}{2}} x \sec x (\tan^2 x) (\tan x) \, dx &= \int \sec^{\frac{1}{2}} x (\tan^2 x) (\tan x \sec x) \, dx = \\
&= \int \left(\sec^{-\frac{1}{2}} x \right) (\sec^2 x - 1) (\tan x \sec x) \, dx
\end{align*}
\]

Let \(u = \sec x \) and \(du = \tan x \sec x \, dx \)

\[
\begin{align*}
&= \int u^{-\frac{1}{2}} (u^2 - 1) \, du = \int \left(u^{\frac{1}{2}} - u^{-\frac{1}{2}} \right) \, du = \left. \frac{u^{\frac{3}{2}}}{3/2} - \frac{u^{-\frac{1}{2}}}{-1/2} \right| = \frac{2}{3} u^{\frac{3}{2}} + 2u^{\frac{1}{2}} + C = \\
&= \frac{2}{3} (\sec x)^{\frac{3}{2}} + 2(\sec x)^{\frac{1}{2}} + C = \frac{2}{3} \sec^{\frac{3}{2}} x + \frac{2}{\sec^{\frac{1}{2}} x} + C
\end{align*}
\]

PRACTICE:
1. \(\int \cos^2 x \tan^3 x \, dx \)
2. \(\int \tan^2 x \, dx \)
3. \(\int \tan^4 x \sec^6 x \, dx \)
4. \(\int \frac{\cos^5 \alpha}{\sqrt{\sin \alpha}} \, d\alpha \)
5. \(\int \frac{\cos x + \sin 2x}{\sin x} \, dx \)
6. \(\int \tan^3 x \sec x \, dx \)
1. \(\frac{1}{2} \cos^2 x - \ln|\cos x| + C \)

2. \(\tan x - x + C \)

3. \(\frac{1}{9} \tan^9 x + \frac{2}{7} \tan^7 x + \frac{1}{5} \tan^5 x + C \)

4. \(2 \sin^{\frac{1}{2}} \alpha - \frac{4}{5} \sin^{\frac{5}{2}} \alpha + \frac{2}{9} \sin^{\frac{9}{2}} \alpha + C \)

5. \(\ln|\sin x| + 2 \sin x + C \)

6. \(\frac{1}{3} \sec^3 x - \sec x + C \)