How can negative numbers be represented using only binary 0’s and 1’s so that a computer can “read” them accurately?

The concept is this: Consider the binary numbers from 0000 to 1111 (i.e., 0 to 15 in base ten).

0001 → 0111 will represent the positive numbers 1 → 7 respectfully

and, 1001 → 1111 will represent the negative numbers −7 → −1, respectfully.

In a computer, numbers are stored in registers where there is reserved a designated number of bits for the storage of numbers in binary form. Registers come in different sizes. This handout will assume a register of size 8 for each example.

It is easy to change a negative integer in base ten into binary form using the method of two’s complement.

First make sure you choose a register that is large enough to accommodate all of the bits needed to represent the number.

Step 1: Write the absolute value of the given number in binary form. Prefix this number with 0 indicate that it is positive.

Step 2: Take the complement of each bit by changing zeroes to ones and ones to zero.

Step 3: Add 1 to your result. This is the two’s complement representation of the negative integer.

EXAMPLE: Find the two’s complement of −17

Step 1: \(17_{10} = 0001\ 0001_2\)

Step 2: Take the complement: 1110 1110

Step 3: Add 1: 1110 1110 + 1 = 1110 1111.

Thus the two’s complement for -17 is 1110 1111_2. It begins on the left with a 1, therefore we know it is negative.

Now you try some:

Find the two’s complement for

a. −11
b. −43
c. −123

To translate a number in binary back to base ten, the steps are reversed:

Step 1: Subtract 1: \(\therefore\ 1110\ 1111 - 1 = 1110\ 1110\)

Step 2: Take the complement of the complement: 0001 0001

Step 3: Change from base 2 back to base 10 \(\therefore\ 16 + 1 = 17\)

Step 4: Rewrite this as a negative integer: −17
This suggests a new way to subtract in binary due to the fact that subtraction is defined in the following manner:

\[X - Y = X + (-Y) \]

EXAMPLE 1: Subtract 17 from 23, as a computer would, using binary code.

Given a register of size 6, \(23 - 17 = 23 + (-17) \) becomes

\[0001\ 0111 + 1110\ 1111 = 10000\ 0110. \]

(Verify both the binary form of 23 and the addition.) Since this result has 9 bits, which is too large for the register chosen, the leftmost bit is truncated, resulting in the binary representation of the *positive* (it starts with a 0) integer \(00000\ 110 \). When this is changed to a decimal number, note that \(4 + 2 = 6 \) which is the answer expected.

Note that a register of size eight can only represent decimal integers between \(-2^{(8-1)}\) and \(2^{(8-1)}\) and, in general, a register of size \(n \) will be able to represent decimal integers between \(-2^{(n-1)}\) and \(2^{(n-1)}\)

EXAMPLE 2: Subtract 29 from 23, as a computer would, using binary code.

Again we use a register of size 8, so that \(23 - 29 = 23 + (-29) \) becomes

\[0001\ 0111 + 1110\ 0011 = 1111\ 1010. \]

(Verify both the binary form of \(-29\) and the addition.) Note that no truncation of the leftmost bit is necessary here. The result is the *negative* (it starts with a 1) integer \(1111\ 1010 \). This needs to be “translated” to change it back to a decimal (see the steps on how to do this in the box above). Hence, going backwards, \(1111\ 1010 - 1 = 1111\ 1001 \). The complement of which is \(0000\ 0110 \) which is 6 in decimal. Negating this we get -6 as expected.

Now you try some:

Subtract each, as a computer out, using binary code using registers of size 8.

a) \(26 - 15 \)

b) \(-31 - 6 \)

c) \(144 - 156 \)

d) Make up your own exercises as needed.
ANSWERS

\[-11 = 1111 \, 0101_2\]
\[-43 = 1101 \, 0101_2\]
\[-123 = 1000 \, 0101_2\]

\[26 - 15 = 26 + (-15) = 0001 \, 1010 + 1111 \, 0001 = 10000 \, 1011, \text{ and truncating the leftmost 1 to rema}\]
\[\text{in within a register of 8, the answer is } 0000 \, 1011_2\]

\[-31 - 6 = (-31) + (-6) = 1110 \, 0001 + 1111 \, 1010 = 11101 \, 1011, \text{ and truncating the leftmost 1 to rema}\]
\[\text{in within a register of 8, the answer is } 1101 \, 1011_2\]

\[144 - 156 = 144 + (-156) = 1001 \, 0000 + 0110 \, 0100 = 1111 \, 0100, \text{ which remains within the regi}\]
\[\text{ster of 8 bits (so nothing gets truncated), thus the answer is } 1111 \, 0100_2.\]