1. POPULATION
 a. Identify the parameter of interest:
 \(\mu \): Mean Numerical (Measurement) \quad \pi \): proportion Categorical (success-failure)

 b. Describe the variable in context with the problem:
 \(\mu \) = mean of the amount of drying time of a particular paint. \quad \pi = \) proportion of people in the community who prefer smoking

2. STATISTICAL METHOD
 a. Determine the confidence level \((1 - \alpha)\) and the level of significance \(\alpha\).

 \textbf{NOTE:} If not specified, set the confidence to 0.95 (95%) and the level of significance to 0.05.

 b. Identify the required formula for the confidence interval:

 When \(\sigma \) known:
 \[
 \bar{x} \pm \left(z_{\text{critical value}} \frac{\sigma}{\sqrt{n}} \right)
 \]

 When \(\sigma \) unknown:
 \[
 \bar{x} \pm \left(t_{\text{critical value}} \frac{s}{\sqrt{n}} \right)
 \]

3. SAMPLE
 a. Calculate or identify the descriptive statistics:

 Descriptive statistics needed:
 - the sample mean
 - standard deviation
 - sample size

 Descriptive statistics needed:
 - the sample proportion
 - sample size

 b. Check the conditions for normality:
 population is normal \quad OR \quad \(np \geq 10 \) AND \(n(l - p) \geq 10 \)
4. STATISTICAL RESULTS
 a. Find the required z or t critical value:

 z critical value:
 1. Find $\frac{\alpha}{2}$
 2. Take this value and locate it in the standard normal probability table and identify the z critical value.

 NOTE: Commonly used z critical value

<table>
<thead>
<tr>
<th>Confidence Level</th>
<th>α</th>
<th>$\frac{\alpha}{2}$</th>
<th>z critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>.10</td>
<td>.05</td>
<td>1.645</td>
</tr>
<tr>
<td>95%</td>
<td>.05</td>
<td>.025</td>
<td>1.960</td>
</tr>
<tr>
<td>99%</td>
<td>.01</td>
<td>.005</td>
<td>2.576</td>
</tr>
</tbody>
</table>

 t critical value:
 1. Determine the degrees of freedom: $df = (n - 1)$
 2. Use the appropriate confidence level and the df and locate the t critical value in the t critical value table.

 For example,

<table>
<thead>
<tr>
<th>Confidence Level</th>
<th>df</th>
<th>t critical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>15</td>
<td>1.75</td>
</tr>
<tr>
<td>98%</td>
<td>7</td>
<td>3.00</td>
</tr>
<tr>
<td>95%</td>
<td>23</td>
<td>2.07</td>
</tr>
</tbody>
</table>

 b. Compute the confidence interval based on formula in step 2.

 NOTE: Calculator shortcuts for the confidence interval:

 When σ known:
 - Z-Interval
 - 1-PropZInt

 When σ unknown:
 - T-Interval

5. CONCLUSION

 Interpret the confidence interval in the context of the problem:

 Ex) There is 95% probability that the mean drying time is between...
 Ex) There is 95% probability that the proportion of people who prefer smoking is between...