I. Definition and Properties of the Unit Circle
 a. Definition: A Unit Circle is the circle with a radius of one \(r = 1 \), centered at the origin \((0,0)\).

 b. Equation: \(x^2 + y^2 = 1 \)

 c. Arc Length
 Since arc length can be found using the formula: \(s = r\theta \)
 (where \(s = \) arc length, \(r = \) radius, \(\theta = \) central angle in radians)
 For the unit circle, since \(r = 1 \), \(s = (1)\theta \)
 Therefore \(s = \theta \)

 The arc length of a sector of a unit circle equals the radian measure of angle \(\theta \).

 d. Circumference: \(C = 2\pi r = 2\pi(1) = 2\pi \)

 The arc length (circumference) of \(2\pi \) is also the radian measure of the angle corresponding to \(360^\circ \).
 \(2\pi \) radians = 360 degrees
 \(\pi \) radians = 180 degrees

 e. Relating Coordinate Values to Trig Functions
 For any point \(P(x, y) \) on the unit circle,
 \(x = \cos \theta \) and \(y = \sin \theta \) where \(\theta \) is
 any central angle with:
 1) initial side = positive \(x \) axis
 2) terminal side = radius through pt. \(P \)

 In the first quadrant this can be verified:
 \[
 \sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{y}{r} = \frac{y}{1} = y
 \]
 \[
 \cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{x}{r} = \frac{x}{1} = x
 \]
f. The x and y axes can be labeled using the radian measure of the angle θ which corresponds to the points where the unit circle intersects the axes.

We can also see this graphically:

$y = \sin x$

$y = \cos x$
Finding the sine and cosine values of quadrantal angles is now easy. For example, to find \(\sin \frac{3\pi}{2}\) use the point \((0,-1)\) which corresponds to a central angle of \(\frac{3\pi}{2}\). Since \(\sin \frac{3\pi}{2}\) is the y coordinate of the point, \(\sin \frac{3\pi}{2} = -1\). Similarly, \(\cos \frac{3\pi}{2} = 0\) (the x coordinate of the point).

g. Examples:

i. Find the arc length of a sector in a unit circle with a central angle of 120°.

Solution:
In a unit circle, arc length = central angle measured in radians, \(s = \theta\). Since \(\pi\) radians equals 180°, multiply 120° by the conversion ratio of \(\frac{\pi}{180}\) radians.

\[
120^\circ \left(\frac{\pi}{180} \right) = \frac{2\pi}{3}
\]
Thus the arc length and the measure of \(\theta\) are both \(\frac{2\pi}{3}\) radians.
ii. Find \(\cos \frac{\pi}{2} \) and \(\sin \frac{\pi}{2} \).

Solution:
\[\theta = \frac{\pi}{2} \] implies the angle is a right angle (90°), so \(P = (0,1) \). Hence,
\[\cos \frac{\pi}{2} = 0 \] (the x coordinate of P) and \(\sin \frac{\pi}{2} = 1 \) (the y coordinate of P).

iii. Find \(\sin(-\pi) \) and \(\cos(-\pi) \)

Solution:
If \(\theta = -\pi \), \(P = (-1,0) \). So \(\sin(-\pi) = 0 \) (y value) and \(\cos(-\pi) = -1 \) (x coordinate of P).

II. More Properties of the Unit Circle

a. If \(\theta = \frac{\pi}{4} \) (which is equivalent to 45°), then for the point P on the unit circle, \(x = y = \frac{\sqrt{2}}{2} \).

If \(\theta = \frac{\pi}{4} \) (45°), then \(P = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) \).

Explanation:
\[x^2 + y^2 = 1 \] (equation of unit circle)
\[x^2 + x^2 = 1 \] (\(x = y \) since it is an isosceles 45°–45°–90° triangle)
\[2x^2 = 1 \]
\[x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = y \]
b. If $\theta = \frac{\pi}{6}$ (which is equivalent to 30°), then for the point P on the unit circle, $x = \frac{\sqrt{3}}{2}$ and $y = \frac{1}{2}$.

Using properties of $30^\circ - 60^\circ - 90^\circ$ triangles with hypotenuse of length 1 (since $r = 1$):

If $\theta = \frac{\pi}{6}$ (30°), then $P = \left(\frac{\sqrt{3}}{2}, \frac{1}{2} \right)$.

![Diagram of unit circle with point P labeled.]

c. If $\theta = \frac{\pi}{3}$ (which is equivalent to 60°), then for the point P on the unit circle, $x = \frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$.

Using properties of $30^\circ - 60^\circ - 90^\circ$ triangles with hypotenuse of length 1 (since $r = 1$):

If $\theta = \frac{\pi}{3}$ (60°), then $P = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)$.

![Diagram of unit circle with point P labeled.]

NOTE:
The larger side, $\frac{\sqrt{3}}{2}$, is always opposite the larger angle, $\frac{\pi}{3}$, and the smaller side, $\frac{1}{2}$, is opposite the smaller angle, $\frac{\pi}{6}$.

d. **Examples:**

Find:

(i) \(\sin \frac{\pi}{6} \)

(ii) \(\csc \frac{\pi}{3} \)

(iii) \(\tan \frac{\pi}{4} \)

Solution:

(i) \(\sin \frac{\pi}{6} = \frac{1}{2} \) (y coordinate when \(\theta = \frac{\pi}{6} \))

(ii) \(\csc \frac{\pi}{3} = \frac{1}{\sin \frac{\pi}{3}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \)

(iii) \(\tan \frac{\pi}{4} = \frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 \)

III. **More on Evaluating Trig Functions Using the Unit Circle**

It is important to recognize the radian measure of the standard angles related to \(\frac{\pi}{6} \), \(\frac{\pi}{4} \), and \(\frac{\pi}{3} \) located in quadrants II, III, and IV.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Reference Angle</th>
<th>QI</th>
<th>QII</th>
<th>QIII</th>
<th>QIV</th>
<th>Point P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{\pi}{6})</td>
<td>(\frac{\pi}{6})</td>
<td>(5\pi)</td>
<td>(7\pi)</td>
<td>(11\pi)</td>
<td>(\left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2} \right))</td>
</tr>
<tr>
<td></td>
<td>(\frac{\pi}{4})</td>
<td>(\frac{\pi}{4})</td>
<td>(3\pi)</td>
<td>(5\pi)</td>
<td>(7\pi)</td>
<td>(\left(\pm \frac{\sqrt{5}}{2}, \pm \frac{\sqrt{2}}{2} \right))</td>
</tr>
<tr>
<td></td>
<td>(\frac{\pi}{3})</td>
<td>(\frac{\pi}{3})</td>
<td>(2\pi)</td>
<td>(4\pi)</td>
<td>(5\pi)</td>
<td>(\left(\pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2} \right))</td>
</tr>
</tbody>
</table>

The signs of the \(x \) and \(y \) values of point P can be determined by knowing the quadrant the angle terminates in. It’s as simple as remembering:
Examples:

1. Evaluate $\sin \frac{5\pi}{4}$.

Solution:

$\frac{5\pi}{4}$ has a reference angle of $\frac{\pi}{4}$.

Since $\frac{5\pi}{4} = \pi + \frac{\pi}{4}$, it is in quadrant III.

$P = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ (since x and y are negative in QIII)

$\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$ (the y coordinate of P)

NOTE: Our final answer will be negative because only $\tan \theta$ and $\cot \theta$ are positive in the third quadrant.
2. Evaluate \(\cos \frac{5\pi}{6} \).

Solution:
\(\frac{5\pi}{6} \) has a reference angle of \(\frac{\pi}{6} \).

Since \(\frac{5\pi}{6} = \pi - \frac{\pi}{6} \), it is in quadrant II.

\[P = (-\frac{\sqrt{3}}{2}, \frac{1}{2}) \] (since x negative in QII)

\[\cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} \] (the x coordinate of P)

3. Evaluate \(\tan \frac{11\pi}{3} \).

Solution:
\(\frac{11\pi}{3} \) has a reference angle of \(\frac{\pi}{3} \).

Since \(\frac{11\pi}{3} = 2\pi - \frac{\pi}{3} \), it is in quadrant IV.

\[P = (\frac{1}{2}, -\frac{\sqrt{3}}{2}) \]

\[\tan \frac{11\pi}{3} = -\frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = -\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3} \]

IV. Other Facts Derived From the Unit Circle
1. **Fundamental Identity:**
 For any point P on the unit circle, $P = (x, y) = (\cos \theta, \sin \theta)$.
 Substituting $x = \cos \theta$ and $y = \sin \theta$ into the equation of the circle:

 \[
 x^2 + y^2 = 1 \\
 (\cos \theta)^2 + (\sin \theta)^2 = 1 \\
 \sin^2 \theta + \cos^2 \theta = 1
 \]

2. **Other identities:**
 The x coordinates of points for θ and $-\theta$ are the same, so:
 \[
 \cos(-\theta) = \cos(\theta)
 \]
 Therefore $\cos(\theta)$ is an **even** function.

 The y coordinates of points for θ and $-\theta$ are the opposite, so:
 \[
 \sin(-\theta) = -\sin(\theta)
 \]
 Therefore $\sin(\theta)$ is an **odd** function.

Practice Exercises:
Use the unit circle to answer the following problems.

1. Evaluate:
 a. $\cos \pi$
 b. $\sin \frac{3\pi}{2}$
 c. $\tan(-3\pi)$
 d. $\csc \frac{\pi}{2}$

2. Find the six trigonometric functions values at the following values of θ:
 a. $\frac{5\pi}{3}$
 b. $\frac{3\pi}{4}$
 c. $\frac{7\pi}{6}$
 d. $-\frac{11\pi}{6}$
Solutions: Unit Circle Trig

1. a) -1
b) -1
c) 0
d) 1

2.

<table>
<thead>
<tr>
<th>Angle</th>
<th>a. $\frac{5\pi}{3}$</th>
<th>b. $\frac{3\pi}{4}$</th>
<th>c. $\frac{7\pi}{6}$</th>
<th>d. $-\frac{11\pi}{6}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrant</td>
<td>QIV</td>
<td>QII</td>
<td>QIII</td>
<td>QI</td>
</tr>
<tr>
<td>Point P</td>
<td>$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$</td>
<td>$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$</td>
<td>$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$</td>
<td>$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$</td>
</tr>
<tr>
<td>sin θ</td>
<td>$-\frac{\sqrt{3}}{2}$</td>
<td>$\frac{\sqrt{2}}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>cos θ</td>
<td>$\frac{1}{2}$</td>
<td>$-\frac{\sqrt{2}}{2}$</td>
<td>$-\frac{\sqrt{3}}{2}$</td>
<td>$\frac{\sqrt{3}}{2}$</td>
</tr>
<tr>
<td>tan θ</td>
<td>$-\sqrt{3}$</td>
<td>-1</td>
<td>$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$</td>
<td>$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$</td>
</tr>
<tr>
<td>csc θ</td>
<td>$-\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$</td>
<td>$\frac{2}{\sqrt{2}} = \sqrt{2}$</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>sec θ</td>
<td>2</td>
<td>$-\frac{2}{\sqrt{2}} = -\sqrt{2}$</td>
<td>$-\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$</td>
<td>$\frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$</td>
</tr>
<tr>
<td>cot θ</td>
<td>$-\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$</td>
<td>-1</td>
<td>$\sqrt{3}$</td>
<td>$\sqrt{3}$</td>
</tr>
</tbody>
</table>