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ABSTRACT
Modulation classification (MC) has a wide range of applications in
spectrum sharing, management, and enforcement and can also be
used by an adversary to launch traffic analysis or selective jamming.
While recent modulation obfuscation techniques show promising
results in mitigating MC attacks, in this paper we develop a novel
convolution neural network (CNN)-based model to attack those
defenses and successfully identify the true modulation scheme. Our
extensive simulation and over-the-air experiments using show that
our classification technique achieves around 85 − 99% accuracy for
SNR levels 0 dB and above. Furthermore, our results demonstrate
that the proposed model can effectively differentiate between ob-
fuscated and non-obfuscated symbols, even when a transmitter
switches between them as a new defense mechanism, achieving an
accuracy of 95%.
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1 INTRODUCTION
In modern wireless communications, digital modulation is used to
map bits into analog symbols at the transmitter, with the number
of bits per symbol (i.e., data rate) being adapted based on the trans-
mitter’s estimate of the channel condition at the receiver. In cases
where the receiver is unable to obtain this information directly
from the frame header, modulation classification (MC) is used to
identify a received signal’s modulation scheme, e.g., by clustering
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the received (noisy) symbols on the constellation map1 to find out
the alphabet size and how many bits each symbol represents (the
modulation order). MC was initially developed for military appli-
cations, such as electronic warfare systems that identify enemy
signals and their capabilities, including those from radars, impro-
vised explosive devices (IEDs), unmanned aerial vehicles (UAVs),
and other sources [1–4]. This information can further trigger coun-
termeasures such as jamming to disrupt enemy communications.
MC now has a wide range of civilian applications, too. For example,
in spectrum surveillance, a blind monitor (a receiver without prior
knowledge of the modulation scheme) in emerging spectrum shar-
ing and dynamic spectrum access systems utilizes MC to determine
if radio regulations are being followed by transmitters [4–9]. Link
adaptation in vehicular networks, situational awareness for interfer-
ence detection and mitigation in satellite communications, and the
Internet of Things also benefit from efficiently using MC [10–12].

Although MC was designed for legitimate uses, it can also be
used by an adversary to perform the actions above for illegitimate
uses or to launch traffic analysis attacks (e.g., [13]) as the modula-
tion scheme and coding rate combined can reveal the date rate and
the payload size (in bytes). An attacker can also use this information
to launch a selective jamming attack, e.g., resulting in an efficient
denial of service in which a transmitter’s data rate can be degraded
from 54 Mbps to 1 Mbps, as shown in [14]. Additionally, an adver-
sary can fingerprint a transmitter [13, 15], breach the privacy of
the user by classifying their activities [16], and more.

To prevent one from performing MC, existing modulation ob-
fuscation techniques aim to conceal the true order of modulation
used at the transmitter without hampering the quality of communi-
cation with its intended receiver [17, 18]. In these techniques, the
symbols are always selected from the alphabet (constellation map)
of the highest-order modulation scheme supported by the system
leveraging coded-modulation techniques; effectively hiding the pay-
load’s true modulation order. Such obfuscated symbols are designed
to exhibit no distinguishable statistical features [17]. Hence, one
cannot employ statistical learning approaches to classify them, as
shown in [19]. Their underlying coded-modulation technique is
further randomized using a shared secret to disguise the correlation
between two successive symbols. However, we investigate whether
an attacker can study a long sequence of such obfuscated symbols
to train a classifier to identify the underlying modulation order.
Therefore, in this paper, we aim to answer the following question:
is it possible to classify the underlying modulation order of the obfus-
cated signals without breaking the secret key? If one can evade the
current obfuscation defenses, then all of the critical applications
above is going to be vulnerable to a new generation of MC attacks.
1A constellation map is a scatter diagram in the complex plane used to geometrically
represent a set of modulated symbols (each defined by its phase and amplitude).
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To this end, we show that a convolutional neural network (CNN)
model can convolve across long input sequences and quickly filter
out redundant and low-correlated features can subsequently re-
veal the rate-dependent correlation among the obfuscated symbols.
This in turn will disclose the underlying modulation scheme with
a significantly higher accuracy than two alternatives known for
learning long-term dependencies in sequences. To the best of our
knowledge, there is no prior work on attacking signals protected
by modulation obfuscation, except one that states but does not ana-
lytically quantify that existing classifiers would not perform well
if symbols are obfuscated [20]. Our work is the first to empirically
break such defenses.

Despite the availability of public datasets of over-the-air received
signals for MC, e.g., RadioML [21], they do not contain signals
obfuscated before transmission. Hence, they are not applicable to
our study. Therefore, we first create a first-of-its-kind dataset of
obfuscated symbols to evaluate the performance of various learning
algorithms. Using this dataset, we observe that the long short-
term memory (LSTM) and transformer network algorithms, known
to be capable of learning long-term dependencies in sequences,
are unable to identify the underlying pattern efficiently. Based on
extensive performance and complexity analysis, our CNN-based
model can circumvent the obfuscation techniques with significantly
higher accuracy and less complexity than LSTM and transformer
models. In contrast to those alternatives, our powerful yet simple
model uses a single one-dimensional convolutional layer to convolve
across input sequences and filter out redundant and low-correlated
features, and several special layers that do not contain any neurons
themselves, which contribute to its lower computational complexity,
faster processing, and higher accuracy.

Contributions—We show that if an adversary is given enough
time to collect long sequences of modulation-obfuscated signals
(e.g., 2000 symbols) and find an appropriate classifier to train it (a
white box model), it will gradually be able to outwit the obfuscation
and launch a MC attack. Specifically, our main contributions are:

• We successfully circumvent the current modulation obfus-
cation defense techniques designed to hide the modulation
scheme by developing a novel, powerful, and simple CNN-
based classifier. We further show and discuss that among
different deep learning (DL) algorithms, including LSTM, our
CNN-based model with the lowest complexity is the most
suitable classifier to effectively launch the attack.

• We generate a new dataset2 and evaluate our attack through
extensive simulation under varying levels of signal-to-noise
ratio (SNR) and complementary USRP3-based experiments.
The results show that our attack can dodge the existing de-
fenses with 99.7% accuracy. Additionally, our model achieves
85% accuracy under very noisy channels (i.e., 0 dB SNR).

• We further show that if a transmitter chooses to switch
between obfuscated and non-obfuscated signals randomly as
an improved defense mechanism, our attack can differentiate
between these two types of signals and further can identify
the underlying modulation order with 95% accuracy.

2Our implementation code and dataset of (simulated and over-the-air) obfuscated
symbols are available at https://github.com/hoquenaureen/attack-mo.
3Universal software radio peripheral, a type of software-defined radio designed by NI.

Figure 1: Digital communication when the receiver is blind.

Paper Outline— We explain modulation classification and the
existing defense against MC attacks in Section 2 and the threat
model in Section 3. Our attack against modulation obfuscation-
based defense and the attack performance are in provided Sections 4
and 5, respectively. We discuss possible new defenses in Section 6
before concluding our paper in Section 7.

2 MODULATION OBFUSCATION
In a digital communication system where the receiver is blind (e.g.,
the headers are encrypted, not decodable, or the communication
protocol is unknown), that receiver applies MC to identify the mod-
ulation scheme before the demodulation process–see Figure 1. A
statistical learning algorithm can easily identify a received signal’s
modulation class (alphabet) by grouping or clustering the received
modulated symbols. As a result, the series of received symbols
is a vastly used feature in MC, e.g., using constellation diagrams,
distances between symbols, in-phase and quadrature (IQ) values,
amplitude and/or phase of symbols [1, 5–7, 20, 22]. Specifically, the
existing MC studies use short series of non-obfuscated symbols (128
symbols, rarely 512 or more) and achieve high scores using different
machine learning (ML) and DL algorithms. For example, Hanna et
al. [1] used an advanced recurrent neural network and Perenda et al.
applied spatial transformers to identify each modulation scheme by
learning the correlations of the IQ samples [6]. These studies were
only focused on classifying the modulated symbols without con-
sidering any obfuscated ones. In fact, it is stated in [20] (although
not quantified through any analysis) that their models would not
perform well under modulation obfuscation.

Existing modulation obfuscation techniques, namely, Conceal
and BoostModulation (CBM) [18] and Friendly CryptoJam (FCJ) [17],
encode the symbols of any modulation scheme into the highest-
order modulation scheme available in the system. These techniques
apply Trellis-coded modulation (TCM) to maintain the communi-
cation quality when the true modulation order, which depends on
channel capacity, is less than the highest one. However, unlike CBM,
FCJ maintains and improves transmission quality (e.g., bit error
rate) using low-complexity TCMs with two or four states only, with-
out requiring any additional power amplification or latency [17].
In the following, we explain how FCJ-based obfuscation works.

For a given ordered set of supported modulation schemes M𝑖 ,
where 𝑖 = 1, 2, . . . , 𝑀 , the FCJ scheme first divides the points in
the constellation map ofM𝑀 into a number of equal-size disjoint
subsets (𝑈 ) with maximum intra-symbol Euclidean distance. The
number of sets is determined by the ratio of 𝑃𝑀 to 𝑃𝑖 , where 𝑃𝑖
denotes the numbers of constellation points in M𝑖 . To account for
additional demodulation errors resulting from using the denser
constellation map ofM𝑀 , TCM is used to generate correlatedM𝑀 -
modulated symbols to represent uncorrelated M𝑖 -modulated ones.
TCM uses a finite state machine at the transmitter to map symbols
from a givenM𝑖 into either set𝑈 𝑗 or𝑈 𝑗+1 (in the case of FCJ) based
on the current state (which itself depends on the past input symbols),
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Figure 2: Example of a Trellis diagram of a 2-state TCMunder
FCJ. 𝑏/𝑈𝑏

𝑗
denotes the transmission of a symbol determined

by the bit 𝑏 in𝑈 𝑗 . Two possible paths for 𝑏0 depending on the
initial state (marked as dashed and dash-dotted lines).

and then moves to the next state based on the current symbol. FCJ
varies 𝑗 ∈ {0, . . . , 𝑃𝑀/𝑃𝑖 − 1} for each symbol based on random bits
J generated using a shared secret to prevent an adversary from
discerning the size of M𝑖 (all M𝑀 -modulated symbols must be
used, with equal probability) and tracing the dependency among
the coded symbol as that would leakM𝑖 when sets𝑈 𝑗 are not secret.

The number of disjoint sets decreases as 𝑖 approaches𝑀 (e.g., to
obfuscate binary phase-shift keying (BPSK) and 16-quadrature am-
plitude modulation (QAM) as 64-QAM, there are 32 and 4 disjoint
sets, respectively). In addition, using TCM introduces multiple possi-
ble paths for the next symbols, albeit not infinite in number. Figure 2
illustrates a scenario where the first input bit 𝑏0 when M𝑖 = BPSK
has two possible transition paths to its next symbol. Our conjecture
is that there are distinct patterns of each obfuscated M𝑖 depend-
ing on the number of possible paths, which itself depends on the
number of TCM states and the number of disjoint sets. Although
the successive symbols are shown in [17] to be statistically uncor-
related, we posit that observing long sequences may contribute to
multiple occurrences of such discerning patterns. Therefore, if an
adversary collects sufficiently large dataset of long sequences of
obfuscated traffic, they may potentially be able to discern these
patterns. We have demonstrated the correctness of this intuition in
Section 6, specifically where we observe that the classification of
BPSK is comparatively more challenging for a learning algorithm
than 16-QAM modulation when both are obfuscated as 64-QAM.
Recall that to obfuscate BPSK and 16-QAM as 64-QAM, there are 32
and 4 disjoint sets available, respectively. Hence, a longer sequence
may reveal the specific pattern for obfuscated BPSK as opposed to
obfuscated 16-QAM (and likewise, 2-state versus 4-state TCM).

3 THREAT MODEL
We consider a rate-adaptive wireless system with a transmitter
(Alice) and a receiver (Bob). Alice can either transmit data to Bob
using no obfuscation or use a modulation obfuscation technique.
TCM can be a 2-state or a 4-state operation (see Section 2). Therefore,
each obfuscated-modulation type has two sub-classes, the number
of TCM states and the true modulation scheme (order).

There is Oscar, an adversary (or a system defender) who is in
communication range of Alice and is entirely passive. He has full
knowledge of how the modulation obfuscation algorithm works
(i.e., a white-box model). He is then able to generate obfuscated
traffic with true data labels for the training phase. His goal is to
uncover the true modulation scheme of the obfuscated wireless
traffic (i.e., symbols) that Alice and Bob are exchanging.

Figure 3: Proposed CNN model. It takes a series of symbols
as input and outputs the class (i.e., modulation scheme).

4 ATTACKING MODULATION-OBFUSCATION
In this section, we provide the details of our neural network archi-
tecture, dataset, and evaluation metrics for the attack.

4.1 Model Architectures
We consider three DL techniques: CNN, LSTM, and transformer
due to their ability to learn patterns from sequential data [23].

LSTM and Transformer Models— These are intuitively potentially
suitable since they can learn the relationships in a long sequence
of data. Instead of treating each point in a sequence independently,
LSTMs can process an entire sequence of data at once using a series
of "gates" to retain useful information about previous data in the
sequence to help with processing new data points. Therefore, LSTM
is specifically good at processing sequences of data (e.g., text, speech,
and common time-series data). On the other hand, a transformer-
based model applies an evolving set of mathematical approaches
(i.e., self-attention) that allows it to "pay attention" to a series of
data. Between an LSTM and a transformer-based model, the latter
is faster. However, our results (see Section 5) show that neither is
able to learn the underlying pattern efficiently. Our proposed LSTM
and transformer models are similar to Figure 3, where the first layer
is an LSTM or a transformer, respectively. Two separate series of
inputs (one for I- and another for Q-values) are fed into this layer.
We provide the details of the rest of the common layers below.

Convolution Neural Network (CNN)-based Model— Our model
takes the received symbols as input and returns their class of modu-
lation scheme. Then, the demodulator converts them into bits based
on the identified modulation class. A CNN layer utilizes its filters to
convolve across the input series to find similarities between differ-
ent locations in the series. The input is fed into a one-dimensional
convolution layer since the inputs are vectors of complex numbers
(i.e., a wireless signal is represented as a series of complex num-
bers). This layer includes one-dimensional filters. Multiple filters
are taken to slice through, map them one by one over the input
vector, and learn the features.

Our proposed architecture consists of two main components:
feature extraction and classification (the last three layers in Fig-
ure 3). We apply batch normalization, a regularization technique to
speed up training and prevent overfitting, to the output of this layer.
Next, an activation function is used over the batch normalization’s
output values. This function’s task is to activate neurons based on
specific features being present in those values. The pooling layer is
applied next to reduce the number of learning parameters (hence,
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the amount of computation performed). The dropout layer ran-
domly selects hidden incoming/outgoing connections and removes
them while training to prevent overfitting. The output of the first
dropout layer is the extracted features that we could feed into the
classification portion, but we further repeat these four layers to
optimize and eliminate redundant correlations from the extracted
features (see 2 in Figure 3). These special layers do not contain
any neurons, but they contribute to reducing computational com-
plexity, faster processing, and more accurate prediction than any
model without them. 1 quickly extracts the relevant features and
2 filters out the redundant and low-correlated ones. In Section 5,
we will show that this repetition improves our model’s prediction
performance without increasing complexity.

The first layer of the classification part is flattening, which is ap-
plied to create a single long feature vector. A dense layer is used to
classify output from the flattening layer. Finally, we apply a softmax
function (𝜎) in the output layer to predict a multinomial probability
distribution, since our problem is multi-class classification. The
output of the dense layer (𝑦 𝑗 ) is in the interval [0, 1], and their sum-
mation will add up to 1, and they can be interpreted as probabilities.
The standard softmax function is defined as 𝜎 (𝑦 𝑗 ) = 𝑒

𝑦𝑗∑𝑛
𝑗=1 𝑒

𝑦𝑗 .
The complexity of our CNN model is O(𝑘𝐿)– very efficient com-

pared to the generic CNN complexity O(𝑘𝐿𝑑2) as described in [23],
where 𝑘 represents the number of filters, 𝐿 is the input sequence
length, and 𝑑 is the representation dimension. To reduce the compu-
tational complexity of our model, we utilized the series of complex
values as one input and only one convolutional layer, unlike existing
wireless traffic studies where they use two-dimensional input with
multiple convolution layers (e.g., four or seven two-dimensional
convolutional layers in [5] and [3], respectively).

4.2 Dataset & Metrics
Our first analysis is under an additive white Gaussian noise (AWGN)
channel. We aim to explore the effect of applying a different number
of states in TCM to obfuscate symbols; hence, we create modulation-
obfuscated traffic according to the scheme outlined in [17]. Our
dataset is balanced since each class contains the exact same number
of data samples.We collect around 400, 000 signals. Awireless signal
is represented as a series of complex numbers (symbols). The SNR
under which we collect signals ranges from 0 − 20 dB. The signals
are obfuscated as 64-QAM, either using 2-state or 4-state TCM,
but their true modulation orders are BPSK, quadrature phase-shift
keying (QPSK), 16-QAM, and 64-QAM. The training and testing
ratio for each analysis is 80% to 20%.

We evaluate the model performance based on accuracy, loss,
F1-score, and confusion matrices. Accuracy is the ratio between the
number of correct predictions and the number of total predictions.
We use cross-entropy (or log loss), defined as𝐿𝑐𝑒 = −∑𝑛

𝑖=1𝑇𝑖 log(𝑝𝑖 ),
by penalizing the probability based on how far it is from the true
value and awarding if close. Here, 𝑛, 𝑇𝑖 , and 𝑝𝑖 denote the number
of classes, true labels, and predicted probability of observation of
class 𝑖 . We also consider F1-score: F1-score = 𝑡𝑝

𝑡𝑝+0.5×(𝑓𝑝+𝑓𝑛) , where
𝑡𝑝 denotes true positives, 𝑓𝑝 denotes false positives, 𝑡𝑛 denotes true
negatives, and 𝑓𝑛 denotes false negatives.

(a) Input length impact. (b) Confusion matrix.

Figure 4: (a) Overall performance; (b) Class 0-3 represent
obfuscated BPSK, QPSK, 16-QAM, 64-QAM, respectively.

5 PERFORMANCE EVALUATION
We implemented our neural network models using Keras as the
front-end and Tensorflow as the back-end in Python, and used a Lab-
VIEW implementation of FCJ. We conducted the experiments on a
Windows 10 Enterprise machine with an Intel Core i7 CPU running
at 3.6 GHz and 32 GB of RAM, without using any GPU acceleration.

5.1 Alternative Learning Models
We first study the CNN, LSTM, and transformer-based classifiers’
performances. We use a subset of our dataset (6000 wireless signals
under AWGN channel, each with 500 symbols). The performance ac-
curacy we achieved using LSTM, transformer, and CNN-based mod-
els are 27%, 33%, and 79% accuracy, respectively. We argue that this
is because of LSTM’s “short-term" memory and the transformer’s
processing of each signal as a whole, rather than symbol-by-symbol,
hence failing to extract the rate-dependent pattern. We also noticed
that the CNN is faster in training than the other two models (LSTM,
transformer, and CNN models took 510 min 21 sec, 3 min 42 sec,
and 2 min 7 sec, respectively). We conclude from this evaluation
that a CNN-based model would be the right choice to identify the
true class (modulation scheme) of obfuscated signals. However, we
further require more data samples and longer series of symbols to
improve the classifier performance.

5.2 Performance under Ideal Channels
Next, we performed an extensive study with our CNN model under
an ideal channel, including its class-by-class performances.

Model Input & Impact of its Length. Each symbol is a complex
number with real and imaginary parts. Unlike a ML method, a
CNN-based model can directly deal with complex numbers as in-
put, instead of requiring two separate series of real and imaginary
numbers (also reduces the computational complexity). To find the
optimal sequence length, we explored different input lengths rang-
ing from 1 to 2048 symbols. In practice, input series may exceed
the maximum length of 2048 symbols, in which case longer traces
can be truncated and shorter ones can be padded to form fixed-
length inputs. Our model achieves 99.7% accuracy and F1-score
when each wireless signal has 2000 or more symbols, as shown in
Figure 4(a). The class-by-class performance is visualized using a
confusion matrix in Figure 4(b).
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Table 1: Search range and final value of the parameters to
optimize the performance of the CNN model.

Hyperparameters Search Range Best Value
Optimizer SGD, Adam, Adamax SGD

Learning Rate [1, 0.1, 0.01, 0.001] 0.01
Momentum [0.1, 0.2, 0.4, 0.6, 0.8] 0.6

Training epochs [1, ..., 100] 5
Batch size [10, 20, 64, 128, 256, 512] 10

First activation LReLU, ELU ELU
Number of filters [8, 16, 32, 64] 32
Dropout rate [0, 0.1, 0.3, 0.5, 0.8] 0

Model Training & Overfitting Concern. Overfitting occurs when a
model onlyworks on its training data, and cannot be generalized. DL
models, like other learning models, are susceptible to overfitting. To
counter this, we use 10% of the training data for validating training
performance. The three parts of our dataset (train, validation, and
test) are mutually exclusive. We find that the difference between
the training and validation cross-entropy loss is less than 0.0081,
indicating that overfitting is not occurring.

Performance Optimization. We tuned the parameters of our model
to their best values to optimize classification performance by per-
forming an exhaustive search through the ranges shown in Table 1.
We explored several optimization functions, such as stochastic gra-
dient descent (SGD), adaptive moment estimation (Adam), Adamax
with different learning rates and momentum as reported in Table 1.
Note that we do not consider standard activation functions such
as sigmoid and rectified linear unit (ReLU) as they do not activate
on negative input values (a symbol can be negative). Therefore,
we included leaky ReLU and exponential linear unit (ELU) in the
activation function search space, as they can handle negative values.

Results & Computation Complexity. Figure 4(a) shows that the clas-
sifier can successfully identify if the received traffic trace is ob-
fuscated or not with more than 98% accuracy and F1-score when
the input series length exceeds 1000 symbols. If we do not include
2 in the model, then the accuracy and F1-score drop to 95% with
more than 2000 symbols. In contrast to previous work [19], which
achieved only random success, our model accurately identifies the
true modulation scheme, as it can go beyond statistical information.
We also examined the training time and observed that our machine
took a total of 139 min and 5 sec for extensive candidate search for
best parameter selection– a one-time cost without 2 in our model
(Figure 3). Including this repetition, it took 79 min and 33 sec for the
same exhaustive search. Training with the best parameters (Table 1)
took only 57 sec– extremely efficient. Therefore, it is inexpensive to
train the model with more (recent) traffic traces on a regular basis.

5.2.1 Performance under Different SNR Levels. We studied perfor-
mance under different SNRs. We utilized the AWGN symbols4 to
generate an SNR-based dataset using MATLAB simulations. The
classification performance of our CNNmodel over different SNR lev-
els is shown in Figure 5(a). We see that the accuracy and F1-score at
20 dB SNR is 99%. For the cases when the signal and noise power are
4AWGN symbols refer to symbols that have been affected only by additive white
Gaussian noise at the receiver, causing demodulation errors.

(a) Accuracy (𝐿 is symbols per input). (b) Confusion matrix

Figure 5: Our attack performance (a) under different SNR
levels, (b) in identifying the states of the obfuscated symbols.
Here, 0: obfuscated BPSK, 1-3: 2-state, and 4-6: 4-state obfus-
cated QPSK, 16-QAM, 64-QAM, respectively.

the same at the receiver (i.e., 0 dB) , the model still achieves almost
85% accuracy with the input length 2000 or greater. Our model’s
performance with obfuscated traffic at a low SNR level is similar to
a complex MC model where modulation is not obfuscated [15].

5.2.2 Performance under Different States. We further studiedwhether
ourmodel can differentiate between the obfuscated symbols that are
generated using a different number of states in TCM. Our dataset
contains obfuscated symbols that are created using 2-state and
4-state TCM. Our observation revealed that the performance of
2-state and 4-state BPSK signals was indistinguishable, as the classi-
fier identified them as the same class. We argue that this similarity
in performance is due to the fact that BPSK symbols contain only
one bit (either 0 or 1), and the introduction of additional states
does not significantly alter the obfuscated symbol dependency, re-
gardless of the number of states. Hence, we combined both types
of obfuscated BPSK as one class, and then train the classifier. The
classifier achieves 97% of overall testing accuracy with input length
of 500 symbols when we combine 2- and 4-state obfuscated BPSK
(see Figure 5(b)).

5.2.3 Performance under Mixed Traffic. We found that if a trans-
mitter chooses to switch between obfuscated and non-obfuscated
signals randomly (as a defense mechanism), our attack can differ-
entiate between obfuscated and non-obfuscated symbols. To do
that, we studied the performance of our model with combined non-
obfuscated and obfuscated wireless traffic. The results show that
our model can identify the underlying modulation scheme with
95% accuracy and F1-score, even under those conditions.

5.3 USRP Experiment
We further evaluate the performance via hardware experiments
in a line-of-sight scenario. We ran the FCJ obfuscation technique
on a USRP testbed (see Figure 6) that consists of two Ettus N210
devices controlled by the LabVIEW USRP driver and connected to
an Intel Core i7 host running Windows 10 Enterprise. We collect
over-the-air modulation-obfuscated transmissions, balancing the
classes by taking an equal number of data samples and considering
100 symbols from each. Our model achieves around 60% overall
accuracy, which is close to our simulation results for 100 symbols
(see Figure 4(a)). We could not use more than 100 symbols due to the
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Figure 6: Two Ettus N210s placed 2meters away from each
other during our experiments. Here, they are kept close for
illustration purposes only.

problem of accumulating carrier frequency offset (the gradual drift
of the local oscillator frequency over time and deviating from the
intended transmission frequency) in long sequences that arises due
to the instability of the local oscillator used for signal generation
and reception and mobility as well as frequency offset estimation
errors at the receiver due to noise. We plan to address this problem
in future work by more precisely estimating the frequency offset
and applying a correction to the received signal.

6 POSSIBLE DEFENSE APPROACHES
Our results indicate that longer traffic traces increase the classi-
fication success rate, as shown in Figure 4. A possible mitigation
is to transmit shorter series, or frames, such as 128 to 500 sym-
bols (e.g., 16 bytes in BPSK), across the classes to ensure random
success. However, this would impact the spectrum utilization and
the receiver processing, as the receiver will need to process more
frames (since the total message would be sent as a small number
of symbols). For example, a 2304-byte frame payload will be 144
frames. We emphasize the significance of adopting a dynamic de-
fense to disrupt or randomize the static pattern of a modulation
obfuscation scheme, preventing adversaries from patiently learning
the unique characteristics and launching successful MC attacks
against a victim’s traffic. This approach will have the potential to
avert the risk of revealing the true modulation scheme.

7 CONCLUSION
In this paper, we exposed that existing modulation-obfuscation
defenses cannot protect the system from MC attacks. Our CNN-
based model is able to classify the obfuscated wireless traffic and
successfully identify the true modulation schemewith 99% accuracy.
Our simulations and USRP experiments show that our technique is
robust even in noisy (AWGN channel) scenarios and achieved 85%
accuracy for 0 dB SNR. In conclusion, our work underscores the
limitations of modulation-obfuscation techniques and highlights
the need for a dynamic approach to protect from MC attacks.
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