Energy-saving strategies for mechanical system operations such as temporary system shutdowns, fan speed adjustments, and outside air reduction are proven effective ways to maintain or improve the preservation quality of a collection environment while reducing the financial burden and carbon footprint of a collecting institution. However, current criteria guiding safe implementation of energy-saving strategies focus on temperature and relative humidity alone, which ignores the significant risk to collections posed by outdoor and indoor-generated pollutants. This project will address that problem by developing a methodology for monitoring room-level pollutant concentrations while implementing these energy-saving strategies and then analyzing that data to quantify and respond to risks.