Moumita Das

Assistant Professor

Contact Information

OfficeGOS 3338
Phone(585) 475-5135

Research Interests

I am interested in the elasticity and statistical mechanics of soft and
squishy materials, particularly biological systems that involve an
interplay between elasticity or viscoelasticity, geometry and
microstructural properties. In particular, my research focuses
on the following areas:
• Cell mechanics - how cells and their components react to, generate and transmit forces and how this impacts upon their functions and fate.  
• Microrheology of composite elastic media.
• Effective medium theories of single-component and composite semiflexible networks.
• Liquid crystalline behavior in gels and cells.
• Mechanics of thin elastic sheets and shells.

Selected Publications

  1. The mechanics of anisotropic spring networks, T. Zhang, J.M. Schwarz, and M. Das, Physical Review E 90, 062139 (2014).
  2. Structure-function relations in the shear properties of neonatal bovine articular cartilage, J.L. Silverberg, A.R. Barrett, M. Das, P.B. Peterson, L. Bonassar, and I. Cohen,  Biophysical Journal 107, 1721 (2014) (selected to be featured on the Cover of October 7, 2014 issue)
  3. Active elastic dimers: Cells moving on featureless tracks, J. Lopez, M. Das, and J. M. Schwarz, Physical Review E 90, 032707 (2014), (selected by the editors of Physical Review E to be an Editors' Suggestion).
  4. Redundancy and cooperativity in the mechanics of compositely crosslinked filamentous networks, M. Das , D. Quint and J.M. Schwarz, PloS ONE 7, 35939 (2012).
  5. Mechanics of soft composites of rods in elastic gels, M. Das and F.C. MacKintosh, Phys. Rev. E. 84, 061906 (2011).
  6. Poisson’s ratio and microrheology of composite elastic materials with rigid rods, M. Das and F.C. MacKintosh, Phys. Rev. Lett. 105, 138102 (2010).
  7. Buckling and force propagation along intracellular microtubules, M. Das, Alex J. Levine, and F.C. MacKintosh, Europhys. Lett. 84, 18003 (2008).
  8. Effective medium theory of semiflexible filamentous networks, M. Das, F.C. Mackintosh and A.J. Levine, Phys. Rev. Lett. 99, 038101 (2007).
  9. Persistence of a pinch in an elastic pipe, L. Mahadevan, A. Vaziri and M. Das, Europhysics Lett. 77, 40003 (2007).
  10. Curvature condensation and bifurcation in an elastic shell, M. Das, A. Vaziri, A. Kudrolli and Mahadevan, Phys. Rev. Lett. 98, 014301 (2007).
  11. Brownian-drag induced particle current in a model colloidal system, M. Das, S. Ramaswamy, A.K. Sood and G. Ananthakrishna, Phys Rev. E 73, 061409 (2006).
  12. Routes to spatiotemporal chaos in the rheology of nematogenic fluids, M. Das, B. Chakrabarti, C. Dasgupta, S. Ramaswamy, and A. K. Sood, Phys. Rev. E 71, 021707 (2005).
  13. Rheological Chaos in Wormlike Micelles and nematic hydrodynamics, M. Das, R. Bandyopadhyay, B. Chakrabarti, S. Ramaswamy, C. Dasgupta, and A. K. Sood, in Molecular Gels, ed. P. Terech, and R. G. Weiss (Springer, 2006).
  14. Spatiotemporal rheochaos in nematic hydrodynamics, B. Chakrabarti, M. Das, C. Dasgupta, S. Ramaswamy and A. K. Sood, Phys. Rev. Lett. 92, 055501 (2004).
  15. Collective stochastic resonance in shear-induced melting of sliding bilayers, M. Das, G. Ananthakrishna, and S. Ramaswamy, Phys. Rev. E 68, 0161402 (2003).
  16. Melting-freezing cycles in a relatively sheared pair of crystalline monolayers, M. Das, S. Ramaswamy, and G. Ananthakrishna, Europhys. Lett. 60, 636 (2002).