Anurag Agarwal Headshot

Anurag Agarwal

Associate Professor

School of Mathematical Sciences
College of Science

585-475-7531
Office Hours
In-person and ZOOM. Every MONDAY 3:30PM to 4:30PM and Every THURSDAY 4:00PM to 4:50PM Or if there is a real need then by appointment as well. For ZOOM link please visit MYCOURSES.
Office Location
Office Mailing Address
08-3216

Anurag Agarwal

Associate Professor

School of Mathematical Sciences
College of Science

Education

BS, MS, Indian Institute of Technology (India); Ph.D., State University of New York at Buffalo

585-475-7531

Personal Links
Areas of Expertise

Select Scholarship

Published Article
Agarwal, A., M. Lopez, and D.A. Narayan. “Representations for complete graphs minus a disjoint union of paths.” Journal ofCominatorial Mathematics and Cominatoral Computing, 72 (Feb 2010): 173-180. Print. «
Agarwal, A. and J.E. Marengo. “The Locus of the Focus of arolling parabola.” The College Mathematics Journal, 41.2 (March 2010): 129-133. Print. «
Agarwal, S. and A. Agarwal. “Investigating the nature of knowledge of mathematics required for teaching of functions.” Proceedings of theInternational Conference of Education, Research and Innovation, 2009-10. Print. «
Formal Presentation
Agarwal, Anurag. “Representation Numbers and Prague Dimension of Graphs.” MAA Seaway Section Meeting. Plattsburgh, NY. 15-16 Oct. 2010. Presentation.

Currently Teaching

MATH-190
3 Credits
This course introduces students to ideas and techniques from discrete mathematics that are widely used in Computer Science. Students will learn about the fundamentals of propositional and predicate calculus, set theory, relations, recursive structures and counting. This course will help increase students’ mathematical sophistication and their ability to handle abstract problems.
MATH-241
3 Credits
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course.
MATH-371
3 Credits
This course provides an introduction to the study of the set of integers and their algebraic properties. Topics include prime factorization and divisibility, linear Diophantine equations, congruences, arithmetic functions, primitive roots, and quadratic residues.
MATH-441
3 Credits
This course covers basic set theory, number theory, groups, subgroups, cyclic and permutation groups, Lagrange and Sylow theorems, quotient groups, and isomorphism theorems. Group Theory finds applications in other scientific disciplines like physics and chemistry.
MATH-495
1 - 3 Credits
This course is a faculty-directed project that could be considered original in nature. The level of work is appropriate for students in their final two years of undergraduate study.
MATH-671
3 Credits
This course is an introduction to the standard results and techniques of number theory. Topics include divisibility, congruences, Diophantine equations, Moebius inversion, quadratic reciprocity, and primitive roots. Cryptography and other applications will be discussed. Projects may be required.
MATH-771
3 Credits
This course is an introduction to the mathematical problems and techniques that serve as a foundation for modern cryptosystems. The topics include: classical cryptosystems computational number theory, primality tests, finite fields, private and public key encryption scheme (RSA, El-Gamal), and applications such as digital signatures, one way functions, and zero knowledge proofs. Use of elliptic curves in cryptography will also be covered.
MATH-790
0 - 9 Credits
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor.