Scott Williams
Professor
School of Chemistry and Materials Science
College of Science
Director, MS Materials Science and Engineering
585-475-3033
Office Location
Scott Williams
Professor
School of Chemistry and Materials Science
College of Science
Director, MS Materials Science and Engineering
585-475-3033
Areas of Expertise
Inorganic Chemistry
Nanomaterials
Metal Oxides
Electronic Materials
Functional Printing
Select Scholarship
Journal Paper
Ouyang, J., et al. "Photonic Sintering of Aerosol Jet Printed Lead Zirconate Titanate (PZT) Thick Films." Journal of the American Ceramic Society 99. 8 (2016): 2569-2577. Print.
Mahajan, Chaitanya G., et al. "Magnetic Field Patterning of Nickel Nanowire Film Realized by Printed Precursor Inks." Materials 12. 6 (2019): 1-12. Print.
Mahajan, Chaitanya, et al. "Materials Sciences and Applications." Formation of copper nickel bimetallic nanoalloy film using precursor inks. 10. (2019): 349-363. Web.
Mahajan, C.G., et al. "Magnetic Field Patterning of Nickel Nanowire Film Realized by Printed Precursor Inks." Materials 12. 6 (2019): 1-12. Print.
Zope, K., D. Cormier, and S. Williams. "Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates." ACS Applied Materials & Interfaces 10. 4 (2018): 3830-3837. Print.
Tapriya, A., et al. "Shallow Si N+P junction diodes realized via molecular monolayer doping." Microelectronic Engineering 193. (2018): 1-6. Print.
Williams, Scott, et al. "Improving the Run-time Stability with Aerosol Jet Printing Using a Solvent Add-back Bubbler." Journal of Print Media Technology Research 5. 3 (2016): 207--214. Print.
Williams, Scott, et al. "Photonic Sintering of Aerosol Jet Printed Lead Zirconate Titanate (PZT) Thick Films." Journal of the American Ceramics Society 99. 8 (2016): 2569--2577. Print.
Mayer, Theodor K., et al. "Hepatitis B Assays in Serum, Plasma and Whole Blood on Filter Paper." BMC Clinical Pathology 12. 8 (2012): 1-5. Web.
Bowles, David J., et al. "Chemiluminescent Identification and Quantification of Artemisinin and Relevant Sequiterpene Lactone Derivatives." Applied Spectroscopy 66. 2 (2012): 175-179. Print.
Published Conference Proceedings
Knowles, A., et al. "Incorporating Quantum Dots in a Magnesium Fluoride Matrix to Enable Deep-UV Sensitivity for Standard Silicon Based Imaging Detectors." Proceedings of the SPIE Defense+Commerical Sensing. Ed. SPIE. Baltimore, MD: International Society for Optics and Photonics, 2019. Web.
Full Patent
Heglund, Daniel, et al. "Chemical Assay to Verify the Quantity and Quality of Sesquiterpene Lactone Derivatives." U.S. Patent 10429400. 1 Oct. 2019.
External Scholarly Fellowships/National Review Committee
6/3/2019 -8/9/2019
Summer Faculty Fellowship Program - Air Force Research Laboratory
Amount: $27,840
Summer Faculty Fellowship Program - Air Force Research Laboratory
Amount: $27,840
Invited Keynote/Presentation
Williams, Scott. "Synthesis, Formulation and Deposition of Metal Oxide Sol-gel Compositions Using Aerosol Jet Printing." ACS 248th National Meeting. American Chemical Society. San Francisco, CA. 10 Aug. 2014. Conference Presentation.
Hodges, Neal II. "Chemiluminescent Indentification and Quantification of Artemisinin and Relevant Sesquiterpene Lactone Derivatives." Joint International Tropical Medicine Meeting 2011. Mahidol University. Centara Grand & Bangkok Convention Centre at CentralWorld, Pratunam, Bangkok, Thailand. 1 Dec. 2011. Conference Presentation.
Formal Presentation
Henry, A. and S. Williams. “Fabrication of a Printed Battery Using a New Method for Manganese Cathode Ink Preparation.” IARIGAI, Montreal, Canada. 12 September 2010. Presentation. "
Williams, S., L. Cade, and D. Clark. “Paper-supported Assay for the Quantification of Alkaline Phosphatase Activity.” IARIGAI. Montreal, Canada. 12 September 2010. Presentation. "
Currently Teaching
CHEM-175
Advanced General Chemistry I Lab
1 Credits
This course provides an introduction to a modern chemical laboratory and complements CHEM-171 lecture material through the use of experimentation. Emphasis is placed on laboratory safety, general laboratory practices, and the use of instrumentation to aid in the understanding of concepts. Topics will include keeping a lab notebook, introduction to Excel, Avogadro’s number, atomic and molecular structure, and thermochemistry.
CHEM-493
Chemistry Research
1 - 3 Credits
This course is a faculty-directed student project or research in chemistry that could be considered of an original nature.
CHEM-495
Advanced Chemistry Research
1 - 3 Credits
This course is a faculty-directed student project or research involving laboratory work, computer modeling, or theoretical calculations that could be considered of an original nature. The level of study is appropriate for students in their final two years of study.
CHEM-790
Research & Thesis
1 - 6 Credits
Dissertation research by the candidate for an appropriate topic as arranged between the candidate and the research advisor.
CHEM-791
Continuation of Thesis
0 Credits
Continuation of Thesis
CHMI-351
Descriptive Inorganic Chemistry
3 Credits
This course covers descriptive inorganic reactions in terms of periodic trends. Topics will include nucleosynthesis and the birth of the universe, applications used in large-scale industrial processes and their environmental impacts, nanostructured materials, and bonding theory will also be discussed. A detailed study of solid-state chemistry and structure will also be addressed.
CHMI-664
Modern Inorganic Chemistry
3 Credits
This course provides an advanced investigation into fundamental principles of inorganic chemistry. Topics covered include molecular symmetry, molecular orbital theory, solid state chemistry, ligand field theory, and the application of physical techniques used in inorganic chemistry. The course will begin with a discussion of symmetry elements and operations, followed by a detailed examination of point groups and their applications to molecular symmetry. The course will then cover molecular orbital theory, including the construction of molecular orbitals and their use in predicting the properties of molecules. The course will also cover solid state chemistry, including crystal structures, defects, and electronic properties of solids. Ligand field theory will be introduced, including the use of symmetry and group theory to understand the electronic structure of transition metal complexes. Finally, the course will cover physical techniques used in inorganic chemistry, including X-ray diffraction, NMR spectroscopy, and electron microscopy.
MTSE-777
Graduate Project
3 Credits
This course is a capstone project using research facilities available inside or outside of RIT.
MTSE-793
Continuation of Thesis
0 Credits
Continuation of Thesis
MTSE-799
Independent Study
1 - 4 Credits
This course is a faculty-directed tutorial of appropriate topics that are not part of the formal curriculum. The level of study is appropriate for a masters-level student.
In the News
-
May 6, 2021
Modular 3D-printed instruments allow science students to conduct experiments at home
How do you teach students to use scientific instrumentation when a pandemic forces classes online and the students have no access to the usual lab or analytic equipment? Adjunct Professor Bruce Kahn found a creative solution this spring while teaching an experimental techniques class.
-
August 29, 2024
Williams presents on the future of glass