Sorry, you need to enable JavaScript to visit this website.

magnify
  • Truly Unique
    Micro-Device Research
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Nanocomputing
    Brain Power
  • Renewable Energy
    Impacts on Climate Change
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.
  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”

Research

  • The Nanophotonics Group is developing silicon photonic chips that will revolutionize computing, communication, and sensing systems. Silicon enabled the electronics age with its good electrical properties, high purity, and scalable manufacturability. However, all electronic devices face imposing performance and energy challenges due to the fundamental limits of electrons. In contrast, photons propagate at the speed of light, can carry vast...

  • The Thermal Analysis, Microfluidics and Fuel Cell Laboratory (TAmFL) at RIT has gained international recognition for advances in fundamental research. With nearly two dozen student researchers, the laboratory immerses students in real-world research that establishes students within the industry long before graduation. Nearly 20 years ago, the laboratory was founded to focus on understanding the fundamentals of microfluidics and the phenomena...

  • The research and fabrication of nanomaterials promises to revolutionize a number of industries and scientific fields, particularly biomedical devices and stem cell engineering. A major barrier to significant adoption and incorporation of novel nanomaterials is the need to produce these materials in high volume and at low-cost. We research the fabrication of ultrathin nanomembranes and the methods to produce these materials more simply, while...

  • The conversion of light from the sun into electrical energy is playing a very important role in our current challenge for alternative energy technologies, to reduce our dependence on fossil fuels as well as reduce greenhouse gas emissions. The vision of Dr. Hubbard’s research group is to accelerate scientific breakthroughs in the discovery of materials and structures that will advance the frontier of the conversion of light to electricity....

  • Our research group works on cryptographic engineering. In short, the research group is involved in the design, implementation, and optimization of crypto-systems in embedded hardware and software. In addition, the group actively works on emerging topics in side-channel analysis attacks and countermeasures. The research conducted in this group includes a number of abstraction levels, including hardware micro architecture and platform specific...