Sorry, you need to enable JavaScript to visit this website.

  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Renewable Energy
    Impacts on Climate Change
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Nanocomputing
    Brain Power
  • Truly Unique
    Micro-Device Research
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing
  • Micro-Device Research
    Photonics Light The Way of Microprocessors

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »



  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.


  • Nanofabrication technology has been central to the field of semiconductor device manufacturing for many years.  As applications grow beyond microelectronics, new needs for research into nanoscale patterning and materials emerge.  The Nanolithography Research Laboratories at RIT has pioneered key advances in nanopatterning and materials technologies that have driven nanolithography into sub-30nm regimes.  Activities are underway in optical (UV...

  • In Biomedical Signal and Image Analysis (BSIA) Lab at Rochester Institute of Technology, our mission is understanding human physiology from an engineering perspective, developing algorithms that can benefit global health care, and training the next generation of scientists and engineers to develop and apply engineering principals in biomedicine. The research of interest includes application of non-stationary signal analysis and classification...

  • Effective manipulation of fluids at the micro/nanometer scale is of great interest in fluid dynamics, biological processes, and material synthesis. Microfluidics together with nanofabrication provides a fine control of fluid transport and interfacial dynamics, and therefore offers a wealth of ways to harness the processes of multiphase flow at the microscale. Our group takes microfluidics and nanofabrication as the main technical...

  • Investigating and modelling the mechanical properties of materials is important for many applications. The most common technique used for mechanical characterization of materials is called nanoindentation. The currently available tools utilized in order to perform nanoindentation have their limitations in terms of sensitivities of force and displacement or limitations due to the hardware for a broad range of material properties. When it comes...

  • The research activities in the Thin Film Electronics group are focused on inorganic thin-film electronics on both silicon and non-silicon platforms.  Research on low-temperature polycrystalline silicon (LTPS) is exploring an alternative method of crystallization using a flash-lamp annealing (FLA) process.  The instrument uses Xenon flash-lamps with an extremely high irradiance to expose samples with pulses in the microsecond timescale, and...