Ali Ogut Headshot

Ali Ogut

Professor

Department of Mechanical Engineering
Kate Gleason College of Engineering

585-475-2542
Office Location

Ali Ogut

Professor

Department of Mechanical Engineering
Kate Gleason College of Engineering

Education

B.Ch.E., Hacettepe University (Turkey); MS, Ph.D., University of Maryland

585-475-2542

Currently Teaching

MECE-210
3 Credits
This course investigates the physical characteristics of a fluid: density, stress, pressure, viscosity, temperature, vapor pressure, compressibility. Descriptions of flows include Lagrangian and Eulerian; stream-lines, path-lines and streak-lines. Classification of flows include fluid statics, hydrostatic pressure at a point, pressure field in a static fluid, manometry, forces on submerged surfaces, buoyancy, standard and adiabatic atmospheres. Flow fields and fundamental laws are investigated including systems and control volumes, Reynolds Transport theorem, integral control volume analysis of basic equations for stationary and moving control volumes. Inviscid Bernoulli and the Engineering Bernoulli equation are utilized when analyzing fluid systems. Other concepts studied include incompressible flow in pipes; laminar and turbulent flows, separation phenomenon, dimensional analysis.
MECE-402
3 Credits
Examines the basic principles applicable to all turbomachinery as well as the consideration of the operating and design characteristics of several basic classes of turbomachinery, including, centrifugal pumps, compressors, and turbines, as well as axial compressors and turbines, and hydraulic turbines. Includes a major team design project.
MECE-403
3 Credits
The fundamentals of propulsion including the basic operating principles and design methods for flight vehicle propulsion systems. Topics include air-breathing engines (turbojets, ramjets, turboprops and turbofans) as well as liquid and solid propellant chemical rockets. Students complete a team study project including a written report and a presentation of the results.
MECE-405
3 Credits
This course covers wind turbine design, performance and theory. Topics include wind turbine performance and components, modeling and simulation of wind energy systems, assessment of available wind energy resources, and conducting wind energy system impact analysis. This course includes a team design project.