Phillip Hutton Headshot

Phillip Hutton

Lecturer

Department of Mechanical Engineering
Kate Gleason College of Engineering

585-475-5778
Office Location

Phillip Hutton

Lecturer

Department of Mechanical Engineering
Kate Gleason College of Engineering

585-475-5778

Currently Teaching

ISEE-770
3 Credits
This course focuses on preparing students to take on a leadership role in design project teams. Topics include product development processes, management of design project teams, developing a business case for design projects, understanding customer needs and translating them into engineering specifications, tools for developing design concepts, tools for assessing the feasibility of design concepts, conducting engineering tradeoffs and analysis to synthesize a preliminary design. Students use the concepts and tools discussed throughout the course in a team-based environment to develop project readiness packages for subsequent use by senior design teams.
MECE-707
3 Credits
This course trains students to utilize mathematical techniques from an engineering perspective, and provides essential background for success in graduate level studies. An intensive review of linear and nonlinear ordinary differential equations and Laplace transforms is provided. Laplace transform methods are extended to boundary-value problems and applications to control theory are discussed. Problem solving efficiency is stressed, and to this end, the utility of various available techniques are contrasted. The frequency response of ordinary differential equations is discussed extensively. Applications of linear algebra are examined, including the use of eigenvalue analysis in the solution of linear systems and in multivariate optimization. An introduction to Fourier analysis is also provided.
MECE-709
3 Credits
Advanced Engineering Mathematics provides the foundations for complex functions, vector calculus and advanced linear algebra and its applications in analyzing and solving a variety of mechanical engineering problems especially in the areas of mechanics, continuum mechanics, fluid dynamics, heat transfer, and vibrations. Topics include: vector algebra, vector calculus, functions of complex variables, ordinary differential equations and local stability, advanced matrix algebra, and partial differential equations. Mechanical engineering applications will be discussed throughout the course.
MECE-730
3 Credits
This course focuses on preparing students to take on a leadership role in design project teams. Topics include product development processes, management of design project teams, developing a business case for design projects, understanding customer needs and translating them into engineering specifications, tools for developing design concepts, tools for assessing the feasibility of design concepts, conducting engineering tradeoffs and analysis to synthesize a preliminary design. Students use the concepts and tools discussed throughout the course in a team-based environment to develop project packages.