Edward Suh
Adjunct Faculty
College of Engineering Technology
Currently Teaching
MCET-220
Principles of Statics
3 Credits
This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate unknown forces using the concept of equilibrium and free body diagrams and to calculate simple stresses and deflections for axially loaded members. Topics include forces, moments, free body diagrams, equilibrium, friction, stress, strain, and deflection. Examples are drawn from mechanical, manufacturing, and civil engineering technology.
MCET-221
Strength of Materials
3 Credits
This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate stresses and deflections in axially loaded members, beams, shafts, and columns. Topics include statically indeterminate problems, thermal stress, stress concentration, combined stress by superposition, and stress transformation equations. Students also gain experience with teamwork, project management, and communications as they complete recitation and project assignments. This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate stresses and deflections in axially loaded members, beams, shafts, and columns. Topics include statically indeterminate problems, thermal stress, stress concentration, combined stress by superposition, and stress transformation equations. Students also gain experience with teamwork, project management, and communications as they complete recitation and project assignments.
MCET-330
Fluid Mechanics & Fluid Power
3 Credits
This course involves the study of the basics of fluid mechanics and fluid power. Areas of study include pressure, forces, viscosity, bulk modulus, flow characterization, efficiency and losses. Fluid Power systems and components are also reviewed including hydraulic/pneumatic systems, pumps, compressors, actuators, valves, accumulators, and directional control valves.
MECA-335
Applications of Fluid Power & Heat Transfer
3 Credits
This course focuses on fluid power, fluid mechanics, flow mechanisms, heat transfer, and the ideal gas laws in the context of mechatronic and robotic systems. Students learn to design and construct pneumatic and hydraulic circuits and controls. Issues of fluid forces, flow characterization, efficiency, losses are applied to pumps, compressors, accumulators, and control valves. Basics of heat transfer, flow mechanisms, and ideal gas laws are applied to robotic and mechatronic systems Laboratory activities put the theory into practice. The course culminates in a comprehensive project where students design and build an electro-fluid power system to solve a practical problem.