Joseph Kenneally
Professor of Practice
Department of Mechanical and Mechatronics Engineering Technology
College of Engineering Technology
Joseph Kenneally
Professor of Practice
Department of Mechanical and Mechatronics Engineering Technology
College of Engineering Technology
Currently Teaching
MCET-111
Characterization of Metals Lab
1 Credits
This lab class accompanies MCET-110 Foundations of Materials. An emphasis is placed on determining material, primarily metals, properties though experimentation and references, and analyzing why a particular material was selected for an application based on the materials properties. Differentiation of materials families is made based on properties. A variety of discovery activities are used to explore the world of metals, including labs of various types, materials selection software, and internet resources.
MCET-150
Engineering Communication and Tolerancing
3 Credits
A course that integrates basic engineering techniques. Topics will emphasize the design and communication of components through the use of hand sketching, solid modeling, dimensioning, tolerancing, and current GD&T standards. Students will be expected to design, build, inspect, and integrate GD&T into designs.
MCET-220
Principles of Statics
3 Credits
This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate unknown forces using the concept of equilibrium and free body diagrams and to calculate simple stresses and deflections for axially loaded members. Topics include forces, moments, free body diagrams, equilibrium, friction, stress, strain, and deflection. Examples are drawn from mechanical, manufacturing, and civil engineering technology.
MCET-221
Strength of Materials
3 Credits
This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate stresses and deflections in axially loaded members, beams, shafts, and columns. Topics include statically indeterminate problems, thermal stress, stress concentration, combined stress by superposition, and stress transformation equations. Students also gain experience with teamwork, project management, and communications as they complete recitation and project assignments. This course provides an introduction to the analysis and design of structures and machines. Students learn to calculate stresses and deflections in axially loaded members, beams, shafts, and columns. Topics include statically indeterminate problems, thermal stress, stress concentration, combined stress by superposition, and stress transformation equations. Students also gain experience with teamwork, project management, and communications as they complete recitation and project assignments.
MECA-290
Mechanics for Mechatronics
3 Credits
Students will learn the applications of mechanics through the examination of mechatronic elements and systems. It is broken into two parts: Fundamentals of Mechanics of Materials (a.k.a. Strength of Materials) You will learn to calculate stresses and deflections in members loaded under axial, transverse, and torsional loads. Fundamentals of Dynamics You will learn to use kinematics (study of motion without regard to forces) and kinetics (study of forces required to cause motion, e.g., Newton’s Laws of Motion) to calculate the motion of particles and rigid bodies in motion. You will also gain experience with computational tools, laboratory equipment, experimental methods, teamwork, project management and communications as you complete project assignments.