Lynn Foley Headshot

Lynn Foley

Visiting Lecturer

Department of Electrical and Computer Engineering Technology
College of Engineering Technology

585-475-2140
Office Location

Lynn Foley

Visiting Lecturer

Department of Electrical and Computer Engineering Technology
College of Engineering Technology

585-475-2140

Currently Teaching

EEET-115
3 Credits
This course develops student skills to analyze and design DC and AC circuits. DC topics include resistance; Ohm’s Law; current and voltage division; simplification of series, parallel, and series-parallel circuits; ladder network analysis; Kirchhoff’s Voltage and Kirchhoff’s Current Laws, source conversions and branch analysis. Additional circuit analysis concepts covered include Thevenin and superposition theorems. AC circuit analysis topics include sinusoidal waveforms as forcing functions; basic R-L-C elements and phasors, including average power and power factor and series AC circuit analysis. Complex numbers and mathematical operations are introduced and utilized to solve series AC circuit problems. Reactance and impedance are introduced and used to solve series circuits.
EEET-116
1 Credits
This laboratory develops skills and practice in the construction, measurement and analysis of DC and introductory AC circuits. Standard laboratory equipment is introduced and utilized to measure resistance, voltage and current in basic and relatively complex circuit configurations. Measurements are employed extensively to verify Ohm's Law; Kirchoff’s Voltage and Kirchoff’s Current Laws and to demonstrate current and voltage division. Circuit simulation software is used throughout to support calculations and establish a baseline for comparison. Students collaborate within teams to research technology areas of curiosity, observe trends about the changing world and inform their peers via verbal presentations.
EEET-126
1 Credits
This laboratory develops skills and practice in the construction, measurement, and analysis of AC circuits. The function generator and oscilloscope are used to measure resistance, voltage and current in a variety of circuit configurations. Measurements are employed extensively to verify Ohm's Law; Kirchhoff’s Voltage and Kirchhoff’s Current Laws and to demonstrate current and voltage division. Circuit simulation software is used throughout to support calculations and establish a baseline for comparison. Students collaborate within teams to research technology areas of curiosity, observe trends about the changing world and inform their peers via verbal presentations.