Jennifer O'Neil Headshot

Jennifer O'Neil

Assistant Professor
Department of Manufacturing and Mechanical Engineering Technology
College of Engineering Technology

585-475-5413
Office Location

Jennifer O'Neil

Assistant Professor
Department of Manufacturing and Mechanical Engineering Technology
College of Engineering Technology

Education

BS, University of Rochester; Ph.D., Purdue University

Bio

Dr. Jennifer O’Neil joined the Rochester Institute of Technology faculty in August 2016 as an Assistant Professor in Mechanical Engineering Technology. She currently studies the spray formation of non-Newtonian liquids to increase the knowledge of flow physics processes and advance the fundamental understanding of fluid dynamics to improve analyses and designs utilizing these substances. Given the broad application of this work, she has completed numerous projects in the fields of aerospace, automotive, alternative energy, biomedical, and pharmaceutical. Dr. O’Neil has advised over 25 undergraduate researchers.

Dr. O’Neil’s current teaching interests include integrating problem- and project-based learning into core mechanical engineering courses to enhance student learning and motivation. Her primary focus being the entrepreneurial mindset. She has won awards for classroom teaching and has disseminated her results in international conferences and journals. She primarily teaches courses at the freshmen level and within the thermal-fluids sequence.

585-475-5413

Currently Teaching

MCET-530
3 Credits
This course provides an in-depth coverage on the application of the first and second law of thermodynamics and conservation principles, mass and energy, to the analysis of open systems and power cycles, including refrigeration, heat pump and power cycles. It also introduces the fundamentals of heat transfer theory, conduction, radiation, free and forced convection, and its application to heat exchangers including free surface and conduit flow. Case studies based on real-world thermal systems are used to illustrate the connection between these interdisciplinary subjects.
MFET-797
3 Credits
This course provides the MMSI graduate students an opportunity to complete their degree requirements by addressing a practical real-world challenge using the knowledge and skills acquired throughout their studies. This course is not only the culmination of a student's course work but also an indicator of the student's ability to use diverse knowledge to provide a tangible solution to a problem. The capstone project topic can be in the areas of product development, manufacturing automation, management system, quality management or electronics packaging. The course requires a comprehensive project report and a final presentation.
MFET-790
3 Credits
The MMSI thesis is based on thorough literature review and experimental substantiation of a problem, by the candidate, in an appropriate topic. A written proposal has to be defended and authorized by the faculty adviser/committee. The proposal defense is followed by experimental work, a formal written thesis, and oral presentation of findings. The candidate should have completed the requisite courses for the program before enrolling for the thesis.
MCET-101
3 Credits
This course will introduce students to the disciplines in the field of mechanical engineering. Students will be introduced to design and engineering problem solving methods that will be applied to problems. Students will collect data, analyze data, perform design calculations, and solve equations. Project reports are generated through the integration of these tools with word processing and presentation software. The application of software tools to the engineering design process will be emphasized throughout.

Select Scholarship

Journal Paper
O'Neil, Dr. Jennifer. "Thermodynamics is fun! (No, really!)." test 1. 1 (2018): 1. Print.
O'Neil, Jennifer. "A Module to Introduce the Entrepreneurial Mindset into Thermodynamics – A Core Mechanical Engineering Course." The Journal of Engineering Entrepreneurship 7. 2 (2016): 1-12. Web.
Mallory, Jennifer and Paul Sojka. "On the Primary Atomization of Non- Newtonian Impinging Jets: Volume I Experimental Investigation." Journal of Atomization and Sprays 24. 5 (2014): 431-465. Print.
Mallory, Jennifer and Paul Sojka. "On the Primary Atomization of Non-Newtonian Impinging Jets: Volume II Linear Stability Theory." Journal of Atomization and Sprays 24. 6 (2014): 525-554. Print.
Invited Article/Publication
O'Neil, Jennifer. "Thermodynamics is fun! (No, really!)." ASEE Prism Magazine. (2018). Print.
Schley, Sara, Carol Marchetti, and Jennifer O'Neil. "Creating an Inclusive Classroom." Inside Higher Ed. (2018). Web.
Published Conference Proceedings
Defoundoux-Fila, Antoinette, et al. "Investigation of Particle Size Distributions from Low-flow Jet Nebulizers." Proceedings of the v. Ed. ICLASS. Chicago, IL: n.p., 2018. Print.
O'Neil, Jennifer, et al. "Is Unaided Active Learning an Effective Teaching Method for those with Learning Disabilities." Proceedings of the 2018 ASEE Annual Conference. Ed. ASEE. Salt Lake City, UT: n.p., 2018. Print.
Schultz, Ryan and Jennifer Mallory. "Effect of Polyelectrolyte Multilayer Fabrication Method on Conductance for Fuel Cell Applications." Proceedings of the 2015, 51st AIAA/SAE/ASEE Joint Propulsion Conference. Ed. JPC. Orlando, FL: n.p., 2015. Web.
Collins, Patrick, Neil Rodrigues, and Jennifer Mallory. "An Experimental Investigation of Sheet Velocity and Jet Diameter Assumptions of Non-Newtonian Impinging Jets." Proceedings of the 2015, 51st AIAA/SAE/ASEE Joint Propulsion Conference. Ed. JPC. Orlando, FL: n.p., 2015. Print.
Kurisko, Nicholas and Jennifer Mallory. "Investigation on Ultrasonic Fuel Vaporization and Oxygen Enhanced Combustion Cycles." Proceedings of the 2015, 51st AIAA/SAE/ASEE Joint Propulsion Conference. Ed. JPC. Orlando, FL: n.p., 2015. Web.
Rodrigues, Neil, Jennifer Mallory, and Paul Sojka. "Impinging Jet Spray Formation using Viscoelastic Liquids." Proceedings of the 2015, 51st AIAA/SAE/ASEE Joint Propulsion Conference. Ed. JPC. Orlando, FL: n.p., 2015. Web.
Woodrow, Chad, Jennifer Mallory, and Jose Riofrio. "Modeling, Simulation, and Experimental Validation of a Servo-Pneumatic Control System with Off-the-Shelf Components." Proceedings of the ASME Symposium on Fluid Power and Motion Control,. Ed. ASME. Chicago, IL: n.p., 2015. Web.
Mallory, Jennifer. "A Module to Introduce the Entrepreneurial Mindset into Thermodynamics - a Core Mechanical Engineering Course." Proceedings of the 2015 ASEE Annual Conference. Ed. ASEE. Seattle, WA: n.p., 2015. Print.
Mallory, Jennifer and Paul Sojka. "A Study of Gelled Propellant Simulants Using Impinging Jet Injectors." Proceedings of the 2012, Triennial International Conference on Liquid Atomization and Spray Systems. Ed. ICLASS. Heidelberg, Germany: n.p., 2012. Print.
Mallory, Jennifer and Paul Sojka. "Impinging Jet Structure and Breakup Using Gelled Propellant Simulants." Proceedings of the Annual Conference on Liquid Atomization and Spray Systems. Ed. ICLASS. Estoril, Portugal: n.p., 2011. Print.