Mihail Barbosu Headshot

Mihail Barbosu

Professor, Applied Mathematics

School of Mathematics and Statistics
College of Science
Director of Data and Predictive Analytics Center
Associate Head, Applied Statistics

585-475-2123
Office Hours
Fall 2025 Monday: 4:15-5:15pm Wednesday: 4:15-5:15pm and by appointment
Office Location

Mihail Barbosu

Professor, Applied Mathematics

School of Mathematics and Statistics
College of Science
Director of Data and Predictive Analytics Center
Associate Head, Applied Statistics

Education

BS, Ph.D., Babes-Bolyai University (Romania); MS, Ph.D., Paris VI University (France)

585-475-2123

Personal Links
Areas of Expertise

Currently Teaching

IDAI-620
3 Credits
This course introduces the mathematical background necessary to understand, design, and effectively deploy AI systems. It focuses on four key areas of mathematics: (1) linear algebra, which enables describing, storing, analyzing and manipulating large-scale data; (2) optimization theory, which provides a framework for training AI systems; (3) probability and statistics, which underpin many machine learning algorithms and systems; and (4) numerical analysis, which illuminates the behavior of mathematical and statistical algorithms when implemented on computers.
STAT-500
3 Credits
This course introduces the student to statistical situations not encountered in regular course of study. It integrates and synthesizes concepts in statistical theory with applications. Topics include open-ended analysis of data, current techniques and practice of statistics, development of statistical communication skills and the use of statistical software tools in data analysis. Each student is required to learn and use a statistical technique beyond what is covered in the previous courses. Students are expected to introduce the method in a presentation and to prepare a comprehensive, professional report detailing the statistical method and its application to a data set.
STAT-675
3 Credits
This course introduces concepts of data visualization and storytelling. Students explore the use of graphical representations of data to convey information. Topics include data visualization principles, defining a research question or business case, establishing data requirements, using R programming language to create custom plots, enhancing data visualizations and dashboards, and telling a data-driven story with visualizations.

In the News