Cory Merkel Headshot

Cory Merkel

Assistant Professor
Department of Computer Engineering
Kate Gleason College of Engineering

585-475-4083
Office Location

Cory Merkel

Assistant Professor
Department of Computer Engineering
Kate Gleason College of Engineering

Education

BS, MS, Ph.D., Rochester Institute of Technology

Bio

Dr. Cory Merkel joined the RIT computer engineering department in 2018. He earned his BS and MS degrees in computer engineering (2011) and a Ph.D. in microsystems engineering (2015), all from RIT. From 2016 to 2018, Dr. Merkel was a research electronics engineer with the Information Directorate, Air Force Research Lab. His current research focuses on mapping of AI algorithms, primarily artificial neural networks, to mixed-signal hardware and the design of brain-inspired computing systems using emerging technologies such as memristors. He has published his work in several peer-reviewed conferences, journals, and books, and is also engaged in a number of STEM outreach activities. For more information, see Dr. Merkel’s research website www.rit.edu/brainlab.

585-475-4083

Currently Teaching

CMPE-630
3 Credits
This course will cover the basic theory and techniques of Digital Integrated Circuit Design in CMOS technology. Topics include CMOS transistor theory and operation, design and implementation of CMOS circuits, fabrication process, layout and physical design, delay and power models, static and dynamic logic families, testing and verification, memory and nanoscale technologies. Laboratory assignments and project facilitate in hands-on learning of circuit-level design and simulation, layout and parasitic extractions, pre and post-layout verification and validation, full-custom flow and Synthesis based flow, using industry standard CAD tools.
CMPE-530
3 Credits
This course will cover the basic theory and techniques of Digital Integrated Circuit Design in CMOS technology. Topics include CMOS transistor theory and operation, design and implementation of CMOS circuits, fabrication process, layout and physical design, delay and power models, static and dynamic logic families, testing and verification, memory and nanoscale technologies. Laboratory assignments and project facilitate in hands-on learning of circuit-level design and simulation, layout and parasitic extractions, pre and post-layout verification and validation, full-custom flow and Synthesis based flow, using industry standard CAD tools.
CMPE-789
3 Credits
Graduate level topics and subject areas that are not among the courses typically offered are provided under the title of Special Topics. Such courses are offered in a normal format; that is, regularly scheduled class sessions with an instructor.