Chemical Engineering Systems Analysis Minor

7e80d4e9-559d-4eb4-9abf-b199680193e1 | 86103


The minor in chemical engineering systems analysis provides students with a sophisticated understanding of the application of scientific knowledge to the solution of a vast array of practical problems in which chemistry plays a critical role. Students are taught the systems methodologies that chemical engineers employ to analyze and solve real world problems involving distinct chemical components, chemical reaction, multiple phases, and mass transfer.

Notes about this minor:

  • This minor is closed to students majoring in chemical engineering.
  • Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.


Required Courses
Chemical Process Analysis
A first course for chemical engineers, introducing units, dimensions and dimensional analysis, simple material balances for batch and continuous systems in steady and unsteady states with and without chemical reaction, and elementary phase equilibrium in multiple component systems. Energy balances on non-reactive systems in open and closed systems are introduced.
Mass Transfer Operations
This course covers the analysis and design of chemical processes for the separation and purification of mixtures. The course includes an introduction to the fundamentals of diffusion leading up to mass transfer coefficients and their use in solving a variety of engineering problems. Design methodologies are examined for equilibrium based processes (such as absorption, stripping, and distillation). Rate-based separation processes, including packed columns and batch adsorption, are examined and contrasted with equilibrium-based processes.
Reaction Engineering
The fundamentals of chemical kinetics are integrated with the concepts of mass and energy conservation, from both a macroscopic and microscopic perspective, to develop models that describe the performance of chemical reactors. Topics include mass action kinetics and absolute rate theory, series and parallel reaction systems, and the mathematical modeling of various reactor configurations. The conceptual framework and tools are developed to understand and design chemical reactor processes and to interpret experimental data obtained on a laboratory scale to design pilot scale and full scale manufacturing processes.
Choose two courses from the following groups:
Alternate Energy Systems
   Clean Energy: Hydrogen Fuel Cells
This course focuses on clean energy sources, theories of different fuel cell operations, hydrogen infrastructure, and the introduction of devices that employ hydrogen. Principles of energy utilization as they relate to the issues of global warming are presented. The fundamentals of electrochemistry, acid-base reactions, organic chemistry, polymers, thermodynamics, chemical kinetics, photochemistry, and plasma chemistry will be covered to develop a foundation for an understanding of renewable energy and hydrogen technology. Topics in the course include technical aspects of hydrogen utilization for power generation and transportation. Disposal schemes for by-products are also discussed.
   Renewable Energy Systems
This course provides an overview of renewable energy system design. Energy resource assessment, system components, and feasibility analysis will be covered. Possible topics to be covered include photovoltaics, wind turbines, solar thermal, hydropower, biomass, and geothermal. Students will be responsible for a final design project.
Advanced Materials
   Chemical Separations
   Multiple Scale Material Science
This course gives students fundamental background in the atomic and molecular structures of engineering materials and how they can be manipulated. The physical and chemical foundations of the thermal, electrical and optical properties of engineering materials are studied. The effect of fabrication on structure/material properties is examined, as well as criteria to select appropriate materials for engineering applications. A summary of nanomaterial properties and the prevalent methods of synthesis will also be highlighted.
   Interfacial Phenomena
This course covers the fundamental principles of interfacial phenomena incorporating unique physics and chemistry associated with interfaces arising between liquids, gases, and solids. It is designed to introduce students to the significance of interfacial science in important engineering applications such as the wetting behavior of liquids on solid surfaces, the coating of thin liquid films, the formation of dispersed phases, and colloid & nanoparticle technology.
   Introduction to Organic Polymer Technology
The first part of the course covers the fundamentals of organic chemistry. The organization, nomenclature, structure, bonding and basic reactions of organic compounds will be discussed, in particular those concepts that are relevant to understand polymer chemistry. The second part of the course will introduce the nomenclature and classification of synthetic polymers. The reactions leading to the formation of relevant polymers, their chemical and physical behavior, and some of their many applications will be discussed.
   Colloid & Interface Science
The parallel growth of nanotechnology and a molecular perspective in the medical and life sciences has focused attention on the colloidal domain structures of dimension 1 nm to 1 mm. This course will introduce colloid and interface science that will allow for an appreciation of the role of colloids in biological systems, industrial processes and commercial products.
   Applied Biomaterials
This course provides an overview of materials used in biomedical applications. Topics covered include structure and properties of hard and soft biomaterials, material selection for medical applications, material performance and degradation in hostile environments, and typical and abnormal physiological responses to biomaterials/environments. Some experiments will be performed in class and a major project is required.
   Introductory Musculoskeletal Biomechanics
This course is an introduction to the structures and components of the human body as well as their basic functionality. Essential elements of human anatomy and histology will be presented and students will be encouraged to correlate their structure and function with non-human structures and devices that might be considered as replacements or improvements. Fundamental concepts in biomechanics will be introduced and integrated with relevant topics from physics. Variability in dimensions and the concepts of normal and exceptional ranges of values in terms of populations will be introduced and how they need to be accounted for and accommodated.
   Introduction to Biomaterials Science
This course is intended to provide an overview of materials used in biomedical applications, both internal and external to the human body. The specific objective of this course is to present the principles which apply to the properties and selection of materials used in medical applications. Topics include an introduction to deformable mechanics and viscoelasticity; structure and properties of metals, ceramics, polymers, and composites; fundamental composition of biological tissues; and principles associated with the interaction between biological tissues and artificial materials.
   Contemporary Issues in Bioengineering
   Biomedical Device Eng
This course is an introduction to the design of medical devices and issues that are unique to these devices. Course content includes some historical background, an overview of existing devices and trends, material selection, interfaces of medical devices with biological tissues, product testing, reliability, and regulations specific to the design and validation of medical devices. A substantial part of the course is a project, in which students will be required to work in teams to complete a preliminary design of a novel device, including appropriate analysis and documentation. Analysis methods learned from prior coursework in the students discipline will be applied to this component of the course.
   Applied Thermodynamics
This is a course in the fundamentals of both single and multiple-component thermodynamics. The first and second laws of thermodynamics and concepts of entropy and equilibrium are examined in open and closed control volume systems. Energy, work, and heat requirements of various unit operations are examined. Equations of states and properties of fluids are explored. Phase transition and equilibrium involving single-and multiple components are examined for both ideal and non-ideal systems. Energy released/absorbed during chemical reaction and solution creation are imbedded in analysis of chemical engineering processes
   Continuum Mechanics I
Fundamentals of static and flowing fluids are examined on both large-scale (control volumes) and local differential scales. Forces on solids due to static and flowing fluids are determined. Head losses and pumping requirements are considered in piping systems. The art of engineering approximation is examined through estimates of forces due to flow on solids, as well as various limiting cases involving internal pipe flows with friction factors. Exact solutions of local differential equations of fluid mechanics are considered under both steady state and transient conditions, and these analyses are used to determine forces in control volume analysis of bodies. The important interplay between differential and control volume analyses in solving problems is emphasized.
   Interfacial Phenomena
This course covers the fundamental principles of interfacial phenomena incorporating unique physics and chemistry associated with interfaces arising between liquids, gases, and solids. It is designed to introduce students to the significance of interfacial science in important engineering applications such as the wetting behavior of liquids on solid surfaces, the coating of thin liquid films, the formation of dispersed phases, and colloid & nanoparticle technology.
   Advanced Separation Processes
This upper-level undergraduate course builds on concepts taught in CHME-330 Mass Transfer Operations. Topics covered include adsorption, membrane separation, extraction, crystallization, and mechanical separation processes. Transient systems are introduced and analyzed to augment steady-state analyses from CHME-330. Case studies are examined to connect fundamental concepts to real world applications
   Design for the Environment 
This course will provide the student with systematic approaches for designing and developing environmentally responsible products. In particular, design trade-offs will be explored.
   Contemporary Issues in Energy and Environment
Semiconductor Processing
   IC Technology
An introduction to the basics of integrated circuit fabrication. The electronic properties of semiconductor materials and basic device structures are discussed, along with fabrication topics including photolithography diffusion and oxidation, ion implantation, and metallization. The laboratory uses a four-level metal gate PMOS process to fabricate an IC chip and provide experience in device design - and layout (CAD), process design, in-process characterization and device testing. Students will understand the basic interaction between process design, device design and device layout.
   Thin Films
This course focuses on the deposition and etching of thin films of conductive and insulating materials for IC fabrication. A thorough overview of vacuum technology is presented to familiarize the student with the challenges of creating and operating in a controlled environment. Physical and Chemical Vapor Deposition (PVD & CVD) are discussed as methods of film deposition. Plasma etching and Chemical Mechanical Planarization (CMP) are studied as methods for selective removal of materials. Applications of these fundamental thin film processes to IC manufacturing are presented.
   Lithography Materials and Processes
Microlithography Materials and Processes covers the chemical aspects of microlithography and resist processes. Fundamentals of polymer technology will be addressed and the chemistry of various resist platforms including novolac, styrene, and acrylate systems will be covered. Double patterning materials will also be studied. Topics include the principles of photoresist materials, including polymer synthesis, photochemistry, processing technologies and methods of process optimization. Also advanced lithographic techniques and materials, including multi-layer techniques for BARC, double patterning, TARC, and next generation materials and processes are applied to optical lithography.