Ben Zwickl Headshot

Ben Zwickl

Associate Professor

School of Physics and Astronomy
College of Science

585-475-4512
Office Location

Ben Zwickl

Associate Professor

School of Physics and Astronomy
College of Science

Education

BS, Purdue University; MS, Ph.D., Yale University

585-475-4512

Areas of Expertise

Select Scholarship

Journal Paper
Martin, Kelly Norris, et al. "Spewing Nonsense [or not]: Communication Competence and Socialization in Optics and Photonics Workplaces." Communication Education 67. 4 (2018): 414-437. Print.
Leak, Anne E, et al. "Hidden Factors that Influence Success in the Optics Workforce." Physical Review Physics Education Research 14. (2018): 10136. Web.
Hu, Dehui and Benjamin M Zwickl. "Examining Students’ Views about Validity of Experiments: From introductory to Ph.D. students." Physical Review Physics Education Research 14. (2018): 10121. Web.
Zwickl, Benjamin, et al. "Alternative Model for Administration and Analysis of Research-Based Assessments." Physical Review PER 12. (2016): 1-7. Print.
Zwickl, Benjamin M, et al. "Model-based Reasoning in the Physics Laboratory: Framework and Initial Results." Physical Review Special Topics Physics Education Research 11. (2015): 20113. Web.
Hoskinson, Anne-Marie, et al. "Bridging Physics and Biology Teaching through Modeling." American Journal of Physics 82. 5 (2014): 434-441. Print.
Zwickl, Benjamin M., et al. "Epistemology and Expectations Survey About Experimental Physics: Development and Initial Results." Physical Review Special Topics - Physics Education Research 10. (2014): 10120. Web.
Zwickl, Benjamin M., Noah Finkelstein, and H. J. Lewandowski. "Incorporating Learning Goals About Modeling Into an Upper-division Physics Laboratory Experiment." American Journal of Physics 82. 9 (2014): 876-882. Print.
Published Conference Proceedings
Owens, Lindsay, et al. "Misaligned Visions for Improving Graduate Diversity: Student Characteristics vs. Systemic/Cultural Factors." Proceedings of the 2018 Physics Education Research Conference, Washington, DC. Ed. Adrienne L. Traxler, Ying Cao, and Steven F. Wolf. Washington, DC: n.p., 2018. Web.
Zwickl, Benjamin M. "Contextualizing Problem-Solving Strategies in Physics-Intensive PhD Research." Proceedings of the 2016 Physics Education Research Conference Proceedings. Sacramento, California: American Association of Physics Teachers, 2016. Print.
Zwickl, Benjamin M. "Characterizing Problem Types and Features in Physics-Intensive PhD Research." Proceedings of the Physics Education Research Conference. Sacramento, California: American Association of Physics Teachers, 2016. Print.
Zwickl, Benjamin M, et al. "Preparing Students for Physics-intensive Careers in Optics and Photonics." Proceedings of the Physics Education Research Conference, College Park, MD, July 29-30, 2015. Ed. Alice D. Churukian, Dyan L. Jones, and Lin Ding. College Park, MD: n.p., 2015. Web.
Hu, Dehui and Benjamin M Zwickl. "Framework for Students’ Epistemological Development in Physics Experiments." Proceedings of the Physics Education Research Conference, College Park, MD, July 29-30, 2015. Ed. Alice D. Churukian, Dyan L. Jones, and Lin Ding. College Park, MD: n.p., Web.
Zwickl, Benjamin M. "Framework for Students’ Epistemological Development in Physics Experiments." Proceedings of the 2015 Physics Education Research Conference. College Park, Maryland: American Association of Physics Teachers, 2015. Print.
Zwickl, Benjamin. "Preparing students for physics-intensive careers in optics and photonics." Proceedings of the 2015 Physics Education Research Conference. College Park, Maryland: American Association of Physics Teachers, 2015. Print.
Zwickl, Benjamin M. "Framework for Students’ Epistemological Development in Physics Experiments." Proceedings of the 2015 Physics Education Research Conference. College Park, Maryland: American Association of Physics Teachers, 2015. Print.
Zwickl, Benjamin. "Preparing students for physics-intensive careers in optics and photonics." Proceedings of the 2015 Physics Education Research Conference. College Park, Maryland: American Association of Physics Teachers, 2015. Print.
Invited Keynote/Presentation
Zwickl, Benjamin M. "Preparing Students for Research Excellence in Optics and Photonics." Division of Atomic, Molecular and Optical Physics (DAMOP). American Physical Society. Columbus, OH. 11 Jun. 2015. Conference Presentation.
Zwickl, Benjamin. "Physics Education Research for the Laboratory Classroom." Making Laboratory-based Teaching More Effective. University of Liverpool. Liverpool, UK, NY. 13 Nov. 2013. Conference Presentation.
Zwickl, Benjamin. "Physics Education Research for the Laboratory Classroom." Invited Colloquium given to the Univ. of Rochester Institute of Optics. Institute of Optics, Univ. of Rochester. Rochester, NY. 23 Aug. 2013. Lecture.

Currently Teaching

PHYS-225
3 Credits
This course introduces methods for using computers to model the behavior of physical systems. Students will learn how computers represent numbers, limits of computation, how to write computer programs, and to use good programming practices. Students will also apply numerical methods of differentiation and integration, and numerical solutions to differential equations in physical situations.
PHYS-670
3 Credits
This course covers the fundamentals of how students learn and understand key ideas in physics and how theory can inform effective pedagogical practice. Through examination of physics content, pedagogy and problems, through teaching, and through research in physics education, students will explore the meaning and means of teaching physics. Topics include: misconceptions, resources and phenomenological primitives, theoretical foundations for active-learning, constructivism, epistemological, affective, and social-cultural issues that affect learning, guided and unguided reflection strategies, design-oriented curricula, and effective uses of educational labs and technology. Useful for all students, especially for those in interested in physics, teaching and education research.

In the News