Matthew Hoffman Headshot

Matthew Hoffman

Associate Professor

School of Mathematical Sciences
College of Science

585-420-6288
Office Hours
Tuesdays: 2-3pm Wednesdays: 12:30-2pm
Office Location
Office Mailing Address
2302 Gosnell Hall

Matthew Hoffman

Associate Professor

School of Mathematical Sciences
College of Science

Education

BA, Williams College; MS, Ph.D., University of Maryland

Bio

My research interests include oceanic and atmospheric dynamics; understanding the fate, transport, and impact of plastic pollution on freshwater systems; data assimilation; remote sensing; hyperspectral vehicle tracking; and cardiac electrical dynamics.

585-420-6288

Areas of Expertise

Select Scholarship

Journal Paper
Uzkent, Burak, Matthew J. Hoffman, and Anthony Vodacek. "Spectral Validation of Measurements in a Vehicle Tracking DDDAS." Procedia Computer Science 51. (2015): 2493—2502. Web.
Hoffman, Matthew J., et al. "Feature Matching with an Adaptive Optical Sensor in a Ground Target Tracking System." IEEE Sensors Journal 15. 1 (2015): 510--519. Print.
Hoffman, Matthew J., et al. "Integrating Hyperspectral Likelihoods in a Multi-dimensional Assignment Algorithm for Aerial Vehicle Tracking." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (2015): --. Print.
Greybush, S. J., et al. "Ensemble Kalman Filter Data Assimilation of Thermal Emission Spectrometer Temperature Retrievals into a Mars GCM." Journal of Geophysical Research: Planets 117. E11 (2012) Web.
Hoffman, M. J., et al. "An Advanced Data Assimilation System for the Chesapeake Bay: Performance Evaluation." J. Atmos. Oceanic Technol. 29. (2012): 1542-1557. Print.
Greybush, Steven J., et al. "Identifying Martian atmospheric instabilitiesand their physical origins using bred vectors." Quarterly Journal of the Royal Meteorological Society. (2012) Print.
Urquhart, E., et al. "Remotely Sensed Estimates of Surface Salinity in the Chesapeake Bay." Remote Sensing of the Environment 23. (2012): 522-531. Print.
Hoffman, M. J., et al. "Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances." Icarus 220. 2 (2012): 1031-1039. Print.
Published Conference Proceedings
Uzkent, Burak, Matthew J. Hoffman, and Anthony Vodacek. "Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor." Proceedings of the SPIE Conference on Video Surveillance and Transportation Imaging Applications. Ed. Robert Loce and Eli Saber. San Francisco, CA: n.p., 2015. Web.
Uzkent, Burak, et al. "Background image understanding and adaptive imaging for vehicle tracking." Proceedings of the SPIE Conference on Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XII. Ed. Daniel J. Henry, et al. Baltimore, MD: n.p., 2015. Web.
Hoffman, Matthew J. "Spectral Validation of Measurements in a Vehicle Tracking DDDAS." Proceedings of the Procedia Computer Science. , Reykjavik: , 2015. Print.
Hoffman, Matthew J. "Background Image Understanding and Adaptive Imaging for Vehicle Tracking." Proceedings of the SPIE Defense + Security. Baltimore, Maryland: SPIE, 2015. Print.
Hoffman, Matthew J. "Efficient Integration of Spectral Features for Vehicle Tracking Utilizing an Adaptive Sensor." Proceedings of the IS&T/SPIE Electronic Imaging 2015. San Francisco, California: SPIE, 2015. Print.
Uzkent, Burak, et al. "Feature Matching and Adaptive Prediction Models in an Object Tracking DDDAS." Proceedings of the Procedia Computer Science. n.p., 2013. Print.
Invited Keynote/Presentation
Hoffman, Matthew J. "Ground Target Tracking Utilizing DDDAS Based Control of an Adaptive Optical Sensor." IEEE Geoscience and Remote Sensing Joint Chapter Meeting. IEEE Geoscience and Remote Sensing Joint Chapter. Rochester, NY. 31 Mar. 2015. Lecture.

Currently Teaching

CHEM-531
3 Credits
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change.
ENVS-531
3 Credits
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change.
ENVS-631
3 Credits
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem augmented by readings in the primary literature. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. The course will culminate in a project based on finding solutions to the real-world problem of climate change. Students will be required to take a leadership role in bridging the multiple disciplines presented
IMGS-699
0 Credits
This course is a cooperative education experience for graduate imaging science students.
IMGS-890
1 - 6 Credits
Doctoral-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor.
IMGS-891
0 Credits
Continuation of Thesis
MATH-181
4 Credits
This is the first in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers functions, limits, continuity, the derivative, rules of differentiation, applications of the derivative, Riemann sums, definite integrals, and indefinite integrals.
MATH-326
3 Credits
This course provides an introduction to boundary value problems. Topics include Fourier series, separation of variables, Laplace's equation, the heat equation, and the wave equation in Cartesian and polar coordinate systems.
MATH-411
3 Credits
This course covers numerical techniques for the solution of nonlinear equations, interpolation, differentiation, integration, and the solution of initial value problems.
MATH-412
3 Credits
This course covers numerical techniques for the solution of systems of linear equations, eigenvalue problems, singular values and other decompositions, applications to least squares, boundary value problems, and additional topics at the discretion of the instructor.
MATH-790
0 - 9 Credits
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor.
PUBL-531
3 Credits
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change.
PUBL-631
3 Credits
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem augmented by readings in the primary literature. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and interrelated nature of global climate change. The course will culminate in a project based on finding solutions to the real-world problem of climate change. Students will be required to take a leadership role in bridging the multiple disciplines presented.

In the News

  • January 31, 2022

    student research in waders in a lake with a pole and a measuring device.

    Tait Preserve becoming hotbed for interdisciplinary research

    RIT has an emerging new hotspot for interdisciplinary research about 25 minutes from the main campus. The Tait Preserve includes a 60-acre lake and a private mile of Irondequoit Creek adjacent to Ellison Park, offering endless opportunities for research, education, and conservation activities.

  • July 30, 2021

    Hand puts plastic water bottle in a blue recycling in on a busy beach.

    Swimming in plastic 

    Crain's Detroit Business interviews Matthew Hoffman, associate professor of mathematical sciences, about how microplastics are appearing in a disturbingly wide range of places in the Great Lakes Basin.