Adam Towsley Headshot

Adam Towsley

Lecturer
School of Mathematical Sciences
College of Science

585-475-6832
Office Location

Adam Towsley

Lecturer
School of Mathematical Sciences
College of Science

Education

MA, Ph.D., University of Rochester

585-475-6832

Currently Teaching

MATH-219
3 Credits
This course is principally a study of the calculus of functions of two or more variables, but also includes the study of vectors, vector-valued functions and their derivatives. The course covers limits, partial derivatives, multiple integrals, and includes applications in physics. Credit cannot be granted for both this course and MATH-221.
MATH-251
3 Credits
This course introduces sample spaces and events, axioms of probability, counting techniques, conditional probability and independence, distributions of discrete and continuous random variables, joint distributions (discrete and continuous), the central limit theorem, descriptive statistics, interval estimation, and applications of probability and statistics to real-world problems. A statistical package such as Minitab or R is used for data analysis and statistical applications.
MATH-182
4 Credits
This is the second in a two-course sequence intended for students majoring in mathematics, science, or engineering. It emphasizes the understanding of concepts, and using them to solve physical problems. The course covers techniques of integration including integration by parts, partial fractions, improper integrals, applications of integration, representing functions by infinite series, convergence and divergence of series, parametric curves, and polar coordinates.
MATH-131
4 Credits
This course is an introduction to the topics of discrete mathematics, including number systems, sets and logic, relations, combinatorial methods, graph theory, regular sets, vectors, and matrices.
MATH-241
3 Credits
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course.