Laura Munoz Headshot

Laura Munoz

Associate Professor, Applied Mathematics

School of Mathematics and Statistics
College of Science

585-475-2523
Office Hours

Spring 2026: Mon 2:00-3:00pm in GOS 3340, Wed 10:10-11:10am on Zoom, and Friday 2:00-3:00pm on Zoom. I may need to make one-time changes to office hours if scheduling conflicts arise. Please email me for the latest scheduling information or if you want to set up an appointment for a time that falls outside my office hours. Zoom links are on myCourses, and I can send them to you by email on request. 

Office Location

Laura Munoz

Associate Professor, Applied Mathematics

School of Mathematics and Statistics
College of Science

Education

BS, California Institute of Technology; Ph.D., University of California at Berkeley

585-475-2523

Areas of Expertise

Select Scholarship

Journal Paper
Otani, Niels, et al. "Ephaptic Coupling as a Resolution to the Paradox of Action Potential Wave Speed and Discordant Alternans Spatial Scales in the Heart." Physical Review Letters 130. (2023): 218401. Web.
Otani, Niels, et al. "The Role of Ephaptic Coupling in Discordant Alternans Domain Sizes and Action Potential Propagation in the Heart." Physical Review E 107. (2023): 54407. Web.
Munoz, Laura, Mark Ampofo, and Elizabeth Cherry. "Controllability of Voltage- and Calcium-driven Cardiac Alternans in a Map Model." Chaos 31. (2021): 23139. Print.
Vogt, Ryan, et al. "Controllability Analysis of a Cardiac Ionic Cell Model." Computers in Biology and Medicine 139. (2021): 104909. Print.
Guzman, Anthony, et al. "Observability Analysis and State Observer Design for a Cardiac Ionic Cell Model." Computers in Biology and Medicine 125. (2020): 103910. Web.
Munoz, Laura, et al. "Discordant Alternans Mechanism for Initiation of Ventricular Fibrillation In Vitro." Journal of the American Heart Association 7. (2018): e007898. Web.
Published Conference Proceedings
Munoz, Laura, et al. "Observability Analysis of Data Reconstruction Strategies for a Cardiac Ionic Model." Proceedings of the Computing in Cardiology. Ed. Christine Pickett. Atlanta, GA: n.p., 2023. Web.
Munoz, Laura, Mark Ampofo, and Elizabeth Cherry. "Controllability of Voltage- and Calcium-Driven Alternans in a Cardiac Ionic Model." Proceedings of the Computing in Cardiology. Ed. Christine Pickett. Tampere, Finland: n.p., 2022. Web.
Munoz, Laura, Mark Ampofo, and Elizabeth Cherry. "Empirical Gramian Based Controllability of Alternans in a Cardiac Map Model." Proceedings of the Computing in Cardiology Conference, September 2021. Ed. Christine Pickett. Brno, Czech Republic: n.p., 2021. Web.
Munoz, Laura and Christopher Beam. "State Estimation for Cardiac Action Potential Dynamics: A Comparison of Linear and Nonlinear Kalman Filters." Proceedings of the Computing in Cardiology Conference, September 2020. Ed. Christine Pickett. Rimini, Italy: n.p., 2020. Web.
Munoz, Laura M. and Niels F. Otani. "Kalman Filter Based Estimation of Ionic Concentrations and Gating Variables in a Cardiac Myocyte Model." Proceedings of the Computing in Cardiology Conference, Zaragoza, Spain, September 22-25, 2013. Ed. Alan Murray. Zaragoza, ES: Computing in Cardiology, Print.
Invited Keynote/Presentation
Munoz, Laura. "Controllability Analysis of a Cardiac Cell Model." Society for Industrial and Applied Mathematics (SIAM) Conference on the Life Sciences. SIAM. Minneapolis, MN. 8 Aug. 2018. Conference Presentation.
Munoz, Laura. "Estimation of Dynamical Variables in a Cardiac Myocyte Model." Society for Industrial and Applied Mathematics Conference on the Life Sciences. Society for Industrial and Applied Mathematics (SIAM). Boston, MA. 12 Jul. 2016. Conference Presentation.

Currently Teaching

MATH-241
3 Credits
This course is an introduction to the basic concepts of linear algebra, and techniques of matrix manipulation. Topics include linear transformations, Gaussian elimination, matrix arithmetic, determinants, vector spaces, linear independence, basis, null space, row space, and column space of a matrix, eigenvalues, eigenvectors, change of basis, similarity and diagonalization. Various applications are studied throughout the course.
MATH-341
3 Credits
This is a second course in linear algebra that provides an in-depth study of fundamental concepts of the subject. It focuses largely on the effect that a choice of basis has on our understanding of and ability to solve problems with linear operators. Topics include linear transformations, similarity, inner products and orthogonality, QR factorization, singular value decomposition, and the Spectral Theorem. The course includes both computational techniques and the further development of mathematical reasoning skills.
MATH-631
3 Credits
This course is a study of dynamical systems theory. Basic definitions of dynamical systems are followed by a study of maps and time series. Stability theory of solutions of differential equations is studied. Asymptotic behavior of solutions is investigated through limit sets, attractors, Poincaré–Bendixson theory, and index theory. The notion of local bifurcation is introduced and investigated. Chaotic systems are studied.
MATH-722
3 Credits
This course will continue to expose students to the logical methodology of mathematical modeling. It will also provide them with numerous examples of mathematical models from various fields.
MATH-761
3 Credits
This course introduces areas of biological sciences in which mathematics can be used to capture essential interactions within a system. Different modeling approaches to various biological and physiological phenomena are developed (e.g., population and cell growth, spread of disease, epidemiology, biological fluid dynamics, nutrient transport, biochemical reactions, tumor growth, genetics). The emphasis is on the use of mathematics to unify related concepts.
MATH-790
0-9 Credits
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor.