Michael Cromer Headshot

Michael Cromer

Associate Professor

School of Mathematical Sciences
College of Science
Director, Applied and Computational Mathematics MS Program

585-475-4078
Office Hours
T/Th: 10-11:30 (Office) W: 9:30-10:30 (Zoom)
Office Location

Michael Cromer

Associate Professor

School of Mathematical Sciences
College of Science
Director, Applied and Computational Mathematics MS Program

Education

BS, York College of Pennsylvania; MS, Ph.D., University of Delaware

Bio

Dr. Cromer received his B.S. in Mathematics from York College of Pennsylvania in 2005, and his Ph.D. in Applied Mathematics from the University of Delaware in 2011. During his time in Delaware, he spent several months at the Institute for Mathematics and its Applications at the University of Minnesota during a special semester on complex fluids, and was awarded the University Dissertation Fellowship. Upon graduation, he was a postdoctoral scholar in Chemical Engineering and the Materials Research Lab at the University of California, Santa Barbara 2011-2013. In 2013, he was awarded a National Research Council Research Associateship and spent the following year conducting research at the National Institute of Standards and Technology. He began teaching at Rochester Institute of Technology (RIT) in 2014. His research focuses on the modeling, analysis, and simulation of complex fluids. He is interested in a wide range of materials (e.g., wormlike micellar solutions, polymer solutions, and colloidal dispersions), which have a wide range of applications (e.g., oil recovery, soft body armor, materials processing).

585-475-4078

Areas of Expertise

Select Scholarship

Journal Paper
Wojcik, Brian, et al. "The Role of Elasticity in the Vortex Formation in Polymeric Flow around a Sharp Bend." Applied Sciences 11. 14 (2021): 6588. Web.
Kalb, Arthur, Larry A. Villasmil, and Michael Cromer. "Elastic Instability and Secondary Flow in Cross-Slot Flow of Wormlike Micellar Solutions." Journal of Non-Newtonian Fluid Mechanics 262. (2018): 79-91. Web.
Cromer, Michael, Glenn H. Fredrickson, and L. Gary Leal. "Concentration Fluctuations in Polymer Solutions Under Mixed Flow." Journal of Rheology 6. 14 (2017): 711-730. Print.
Kalb, Arthur, et al. "Role of Chain Scission in Cross-Slot Flow of Wormlike Micellar Solutions." Physical Review Fluids 2. (2017): 1-10. Print.
Cromer, M. and L. P. Cook. "A Study of Pressure-Driven Flow of Wormlike Micellar Solutions through a Converging/Diverging Channel." Journal of Rheology 60. (2016): 953-972. Web.
Peterson, J. D., et al. "Shear Banding Predictions for the Two-Fluid Rolie-Poly Model." Journal of Rheology 60. (2016): 927-951. Web.

Currently Teaching

MATH-606
1 Credits
The course prepares students to engage in activities necessary for independent mathematical research and introduces students to a broad range of active interdisciplinary programs related to applied mathematics.
MATH-381
3 Credits
This course covers the algebra of complex numbers, analytic functions, Cauchy-Riemann equations, complex integration, Cauchy's integral theorem and integral formulas, Taylor and Laurent series, residues, and the calculation of real-valued integrals by complex-variable methods.
MATH-790
0 - 9 Credits
Masters-level research by the candidate on an appropriate topic as arranged between the candidate and the research advisor.
MATH-791
0 Credits
Continuation of Thesis
MATH-799
1 - 3 Credits
Independent Study
MATH-231
3 Credits
This course is an introduction to the study of ordinary differential equations and their applications. Topics include solutions to first order equations and linear second order equations, method of undetermined coefficients, variation of parameters, linear independence and the Wronskian, vibrating systems, and Laplace transforms.

In the News

  • June 1, 2021

    screenshot of 19 people on a Zoom videoconference call.

    RIT seniors use mathematical modeling to explore COVID-19 questions for policymakers

    Mathematical modeling has been a powerful tool for policymakers grappling with COVID-19 to help predict how targeted actions can impact the rates of infections, minimize the risk of exposures, increase recovery rates, and much more. Fifteen seniors who took the Senior Capstone in Math course this spring put their modeling skills to the test to help officials evaluate past policies and predict future outcomes.