Environmental Science Minor

784f97e8-c08f-41a4-8958-c33c47094009 | 86067

Overview

The environmental science minor introduces students to the complexities of environmental issues and concepts, and provides them with opportunities to further investigate many of these issues through advanced course work. Central to this minor are the development of field, analytical, and problem solving skills and an understanding of the multiple perspectives often embedded in environmental issues. Students interested in becoming “citizen scientists,” or those pursuing employment or an advanced degree with an environmental focus, will find this minor beneficial.

After completing the required courses, students choose one of the following tracks: built environment/climate change, ecology, environmental microbiology, or GIS/remote sensing.

Notes about this minor:

  • This minor is closed to students majoring in environmental science.
  • Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.

Curriculum

Course
Required Courses
ENVS-101
Concepts of Environmental Science
This course is the foundation course for the Environmental Science major and presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through lecture, case studies and active participation. In this course, the focus will be on sustainability as the foundation for problem solving while investigating a number of environmental issues and establishing environmental literacy. Topics may include biodiversity, ecosystems, pollution, energy, and global climate change. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, history and engineering are embedded in the scientific matrix used to present this course.
ENVS-111
Soil Science
This is an introductory course on soil science, covering concepts such as soil taxonomy, soil ecology, physical soil properties, soil formation and geomorphology, and soil conservation. The lecture portion of the course will consist of in-class demonstrations and exercises, discussion groups, and traditional lecture materials. Lab exercises will focus on field sampling techniques and bench analyses, soil texture and partial size analyses, basic soil chemistry properties, land use planning, and spatial analyses.
Built Environment/Climate Change Track
Required Course
ENVS-201
Environmental Workshop
This workshop serves as the second core course for the Environmental Science major. Through in-class exercises, outside labs, and field trips, students will begin to learn problem solving and analytical skills needed to investigate and address environmental issues. Topics may include assessing campus biodiversity and ecosystems, calculating personal and campus ecological footprints and sustainability indexes, environmental modeling, and campus sustainability projects. To demonstrate the interdisciplinary methodology of environmental science, elements of government/political science/policy, ethics, economics, sociology, and history are embedded in the scientific matrix used to present this course.
Choose two of the following
  ENVS-301
   Environmental Science Field Skills
Environmental Science Field Skills presents an integrated approach to the interrelated, interdisciplinary principles of environmental science through case studies, site visits and field work. In this course, the focus will be on learning methods for environmental analysis, including experimental design, water and soil quality, primary production and biodiversity, land use/land cover change and ecosystem restoration. The course will culminate in a stressed stream analysis of a local watershed. Additional topics may include geographic information systems, wetlands, environmental education and sustainable food production. The interdisciplinary nature of environmental science will be illustrated through elements of government/political science/policy, ethics, economics, sociology, history and engineering.
  ENVS-330
   Urban Ecology
  ENVS-531
   Climate Change: Science Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change.
Ecology Track
Required Course
BIOL-240
General Ecology
This course is an introduction to population, community and ecosystem ecology, stressing the dynamic interrelationships of plant and animal communities with their environments. The course includes such ecological concepts as energy flow and trophic levels in natural communities, population and community dynamics, biogeography and ecosystem ecology.
Choose two of the following
  BIOL-371
   Freshwater Ecology
This course will explore the ecology of freshwater ecosystems, including rivers, lakes, and wetlands; with an emphasis on ecosystems in Western New York. The chemical and physical environment of each system and the resulting biological communities will be explored. Threats to the ecosystem services supplied by freshwater resources will also be investigated.
  BIOL-385
   Seneca Park Zoo Internship
This course will combine in-class lecture from specialists in the zoological field with volunteering in a zoo. This course will require the use of knowledge gained to design an exhibit for a selected species as a group. Topics covered will include the purpose of zoos, the history of the Seneca Park Zoo, wildlife medicine, population (conservation) genetics, biological exhibit design, zoo research, animal behavior, zoo management, zoo community education, and zoo ethics. There will be an opportunity to develop an understanding of the biological basis of the zoo’s activities. This course will provide an intensive hands-on experience by assisting zoo staff in one department area for 8 hours, plus 2 hours of classroom work, per week over the semester.
  BIOL-444
   Ornithology
This course will cover the major principles in ornithology from evolutionary origins to the study of physiology, flight, behavior, life history traits and conservation. Exploration of current topics in avian biology and exploration of bird diversity will be key features of the lecture and lab. Labs will introduce current techniques in applied avian research and monitoring in both the field and lab.
  BIOL-573
   Marine Biology
This course explores marine biology by focusing on the diversity of life and influence of oceanographic phenomena on the various ecosystems. Morphological and physiological adaptations along with environmental threats will also be investigated.
  BIOL-575
   Conservation Biology
  ENVS-305
   Urban Ecology
Urban Ecology focuses first on the natural systems of urban areas and how those systems function in an undisturbed setting, with an emphasis on the types of ecosystem functions and services natural systems provide. Second, the course focuses on how humans have impacted those natural systems through urban development, and how those impacts can be mitigated or avoided by using the examples provided by nature to influence more sustainable development and maintain (or even enhance) ecological functions and services in urban landscapes. The course will examine and compare examples of several urban settings from around the world, paying particular attention to the connections between the physical, social and cultural aspects of sustainability. The course will meet during spring semester, with a required 2.5-week study tour to Malmö, Sweden after graduation in May. Students must apply through the Office of Study Abroad and an additional fee applies to the course.
  ENVS-311
   Wetlands
This is a course on the interactions of vegetation, soils, and hydrology that characterize wetlands. Ecosystem characteristics and processes are emphasized. Wetland policies, regulations, classification, and value systems are also covered. Field work and hands-on learning are integrated into the course through projects and field trips.
  ENVS-531
   Climate Change: Science Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change.
Environmental Microbiology Track
Required Course
BIOL-204
Introduction to Microbiology
This course is an introduction to microorganisms and their importance. Principles of structure and function, metabolic diversity, taxonomy, environmental microbiology, bioremediation, and infectious diseases of bacteria are discussed. Basic laboratory techniques covered include: microscopy; staining, culturing, isolation, and identification of bacteria; isolation and identification of normal flora; identification of unknown bacteria; antibiotic resistance; metabolic tests; clinical and commercial testing protocols; and detection and counting of bacteria in environmental samples (foods, water, soils).
Choose two of the following
  BIOL-306
   Food Microbiology
This course presents the microbiology of foods. Topics include microbial food spoilage, foodborne pathogens, food preservation techniques, and environmental parameters found in foods important in the survival of food spoilage microbes and foodborne pathogens. The lab will include exercises on isolating heterotrophs from all kinds of food, isolation of fungi from various foods, and the survival of various pathogens in food and beverages.
  BIOL-307
   Microbiology of Wastewater
This is an advanced course in the microbiology of wastewater treatment, solids treatment, and the generation and maintenance of drinking water. Topics include activated sludge processes, clarification processes, disinfection processes, trickling filters, rotating biological contactors, waste stabilization ponds, sludge microbiology, anaerobic digestion of biosolids, microbial aspects of drinking water and drinking water distribution systems, and public health aspects of wastewater and biosolids disposal on land and in marine systems.
  BIOL-310
   Bioenergy: Microbial Production
This course presents how microbial processes are used to produce various biofuels from renewable feedstocks. The topics presented include bioethanol production, biobutanol production, methane (biogas) production, biodiesel production, and the economics involved with the production of alternative fuels.
  BIOL-370
   Environmental Microbiology
This course presents the microbiology of soils, freshwater, marine environments, and extreme environments. Topics include nutrient cycling in soils by microorganisms, the diversity of microorganisms in soils, the role of microorganisms in freshwater environments such as lakes, rivers, and wetlands and marine environments such as the open ocean, coastline environments, and salt marshes, and the diversity of microorganisms in extreme environments including highly acidic, highly alkaline, and highly saline environments. Laboratory experiments will explore the types of bacteria in different types of soils in Western New York, types of bacteria in different freshwater environments in Western NY, determining total and fecal coliform counts in freshwaters, determining the presence of antibiotic resistant coliforms in sediment samples, and examining the survival of various human pathogens in surface waters.
GIS/Remote Sensing Track
Required Course
ENVS-250
Applications of Geographic Information Systems
Through hands-on projects and case studies, this course illustrates concepts and applications of raster and vector geographic information systems (GIS) in a variety of disciplines, such as environmental science, biology, geology, geography, sociology, and economics. Students will learn how to use GIS software and spatial analyses, plan a project, create a database, and conduct an independent project. Students should have completed a foundational course in their major and be comfortable working with computers. Experience with programming is also useful. (Foundational course in student's major field of study or permission of instructor).
Choose two of the following
  ENVS-550
   Hydrologic Applications of Geographic Information Systems
  IMGS-431
   Environmental Applications of Remote Sensing
This course offers an introduction to remote sensing systems and a selection of environmental applications of remote sensing. The basic properties of electromagnetic radiation, its interaction with the atmosphere and earth surfaces (e.g., vegetation, minerals, water, etc.), and the interpretation of these interactions are dealt with in the first half of the course. This is followed by a description of airborne and spaceborne, active and passive sensors that operate throughout the electromagnetic spectrum for detecting physical phenomena. Finally, an introduction is provided to pre-processing and analysis techniques that are useful for extracting information from such sensors. The Earth's atmospheric, hydrospheric, and terrestrial processes are considered at local to regional scales. Application areas include monitoring vegetation health, measuring biomass (carbon sequestration), identifying cultural features, assessing water resources, and detecting pollution and natural hazards.
  IMGS-532
   Advanced Environmental Applications of Remote Sensing
This course will focus on a broader selection of analytical techniques with an application-centric presentation. These techniques include narrow-band indices, filtering in the spatial and frequency domains, principal component analysis, textural analysis, hybrid and object-oriented classifiers, change detection methods, and structural analysis. All of these techniques are applied to assessment of natural resources. Sensing modalities include imaging spectroscopy (hyperspectral), multispectral, and light detection and ranging (lidar) sensors. Applications such as vegetation stress assessment, foliar biochemistry, advanced image classification for land use purposes, detecting change between image scenes, and assessing topography and structure in forestry and grassland ecosystems (volume, biomass, biodiversity) and built environments will be examined. Real-world remote sensing and field data from international, US, and local sources are used throughout this course.