Jeremy Brown Headshot

Jeremy Brown

Lecturer
Department of Computer Science
Golisano College of Computing and Information Sciences

585-475-4523
Office Location
GOL-3659
Office Mailing Address
Computer Science Depr 102 Lomb Memorial Dr Rochester, NY 14623

Jeremy Brown

Lecturer
Department of Computer Science
Golisano College of Computing and Information Sciences

Education

BS in Computer Science, RIT; MS in Information Technology Management, Florida Institute of Technology

585-475-4523

Areas of Expertise

Currently Teaching

CSCI-251
3 Credits
This course is an introduction to the organization and programming of systems comprising multiple computers. Topics include the organization of multi-core computers, parallel computer clusters, computing grids, client-server systems, and peer-to-peer systems; computer networks and network protocols; network security; multi-threaded programming; and network programming. Programming projects will be required.
CSCI-320
3 Credits
This course provides a broad introduction to the principles and practice of modern data management, with an emphasis on the relational database model. Topics in relational database systems include data modeling; the relational model; relational algebra; Structured Query Language (SQL); and data quality, transactions, integrity and security. Students will also learn approaches to building relational database application programs. Additional topics include object-oriented and object-relational databases; semi-structured databases (such as XML); and information retrieval. A database project is required.
CSCI-641
3 Credits
The goal of this course is to introduce the students to a programming paradigm and an appropriate programming language chosen from those that are currently important or that show high promise of becoming important. A significant portion of the learning curve occurs through programming assignments with exemplary solutions discussed later in class. The instructor will post specifics prior to registration. With the approval of the program coordinator, the course can be taken for credit more than once, provided each instance deals with a different paradigm and language. A term project involving independent investigation is also required. Note: students who complete CSCI-541 may not take CSCI-641 for credit.
CSCI-541
3 Credits
The goal of this course is to introduce the students to a programming paradigm and an appropriate programming language chosen from those that are currently important or that show high promise of becoming important. A significant portion of the learning curve occurs through programming assignments with exemplary solutions discussed later in class. The instructor will post specifics prior to registration. With the approval of the program coordinator, the course can be taken for credit more than once, provided each instance deals with a different paradigm and language.
ISEE-200
3 Credits
A first course in computational problem solving for engineers. Students will learn the theory necessary to develop algorithms to solve computational problems in the engineering disciplines. Topics include: program design and implementation, integrated development environment, mathematical operations, file input/output, data manipulations, functions, and arrays. Course also covers an introduction to implementing object-oriented programming and graphical user interface.
CSCI-351
3 Credits
This course is an in-depth study of data communications and networks. The course covers design of, and algorithms and protocols used in, the physical, data link, network, transport, and application layers in the Internet; methods for modeling and analyzing networks, including graphs, graph algorithms, and discrete event simulation; and an introduction to network science. Programming projects will be required.
CSCI-799
1 - 3 Credits
Students work with a supervising faculty member on topics of mutual interest. A student works with a potential faculty sponsor to draft a proposal that describes what a student plans to do, what deliverables are expected, how the student's work will be evaluated, and how much credit will be assigned for successful completion of the work. The faculty sponsor proposes the grade, but before the grade is officially recorded, the student must submit a final report that summarizes what was actually accomplished.