Sustainable Product Development Minor

Overview for Sustainable Product Development Minor

This multidisciplinary minor is for students interested in exploring issues associated with developing and delivering sustainable product systems. Courses enhance the understanding of the three dimensions of sustainability (economic, ethical, and environmental), develop awareness of the need for more sustainable approaches to product development, and explore strategies for developing and delivering sustainable product systems.

Notes about this minor:

  • Posting of the minor on the student’s academic transcript requires a minimum GPA of 2.0 in the minor.

The plan code for Sustainable Product Development Minor is SUSPRD-MN.

Curriculum Update in Process for 2024-2025 for Sustainable Product Development Minor

Current Students: See Curriculum Requirements

Required Courses
Engineering Economy*
Time value of money, methods of comparing alternatives, depreciation and depletion, income tax consideration and capital budgeting. Cannot be used as a professional elective for ISE majors. Course provides a foundation for engineers to effectively analyze engineering projects with respect to financial considerations. Lecture 3 (Fall, Spring).
Fundamentals of Sustainable Engineering
This is a high level survey course that reviews the product lifecycle from various perspectives and highlights the leverage over material, process, and environmental impacts available at the design phase. Tools and strategies for reducing the environmental impacts associated with the sourcing, manufacture, use, and retirement of products will be reviewed and evaluated. (This course is restricted to students in ISEE-MS, SUSTAIN-MS, ENGMGT-ME, MECE-MS, MECE-ME, SUSPRD-MN, MIE-PHD or those with at least 4th year standing in ISEE-BS or ISEEDU-BS.) Lecture 3 (Fall).
Lifecycle Assessment
This course introduces students to the challenges posed when trying to determine the total lifecycle impacts associated with a product or a process design. Various costing models and their inherent assumptions will be reviewed and critiqued. The inability of traditional costing models to account for important environmental and social externalities will be highlighted. The Lifecycle Assessment approach for quantifying environmental and social externalities will be reviewed and specific LCA techniques (Streamlined Lifecycle Assessment, SimaPro) will be covered. (This course is restricted to students in ISEE-MS, SUSTAIN-MS, ENGMGT-ME, MECE-MS, MECE-ME, SUSPRD-MN, MIE-PHD or those with at least 4th year standing in ISEE-BS or ISEEDU-BS.) Lecture 3 (Spring).
Choose two courses from the following groups (at least one course must come from the social context group):
   Social Context
 Climate Change: Science, Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
 Environmental Economics
This course examines the relationship and apparent conflict between economic growth and environmental quality, the economics of environmental issues and policy, the environment as a resource and a public good, and the ability and lack of ability of free markets and the government to deal adequately with pollution and other environmental problems. (Prerequisites: ECON-101 or completion of one (1) 400 or 500 level ECON course.) Lecture 3 (Spring).
 Climate Change: Science, Technology & Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
 Grand Challenges: Clean Water
We face grand challenges in the 21st century that will test our collective intelligence and resourcefulness — global change, new diseases, the need for access to clean water, technological developments that are changing us and our relation to the world. We have the opportunity to transform our future through innovation and leadership, but we need to improve our critical thinking, innovate towards possible solutions, and work across disciplines to meet these common challenges. This course is therefore open to all students with the curiosity, imagination, and commitment to meet such challenges. We need engineers, scientists, public policy specialists, and humanists — individuals from every field of study and endeavor –– to contribute to global efforts to meet these challenges. One of the most important challenges of our time — and one identified by the National Academy of Engineers as among fourteen Grand Challenges— is that of providing access to clean water to people across the globe. This course focuses on this grand challenge though interdisciplinary links between the liberal arts and engineering. Students will work in teams to analyze the scope of the clean water problem, examine real case studies, trouble shoot observed problems, and propose alternative solutions. Given the social and cultural contexts within which the need for clean water access arises, this course encourages students to think holistically about sustainable solutions rather than narrowly about the technical quick fix. (Prerequisites: This class is restricted to students with 1st or 2nd year standing.) Lecture 3 (Fall).
 Environmental Ethics and Political Ecology
This course examines environmental issues through a variety of political and ethical perspectives. The goal of the course is to understand how the meaning of political and ethical concepts (e.g., citizenship, justice, responsibility, security, sovereignty) have been broadened or reinterpreted in light of the ascendancy of environmentalism. For instance, the course will cover questions concerning whether environmentalism has encouraged a more precautionary sort of politics, especially in regard to agricultural biotechnology, along with how it has transformed the traditional military definition of security to include new notions such as climate or food security. To address these questions and issues, the course fosters an appreciation of the ethical reasoning of the interdisciplinary field known as political ecology. An emphasis on the ethical reasoning of political ecology will facilitate a more comprehensive understanding of environmental issues through unraveling the political forces at work in environmental change at both the global and local levels. Lecture 3 (Fall, Spring).
 Technological Innovation and Public Policy
Technological innovation, the incremental and revolutionary improvements in technology, has been a major driver in economic, social, military, and political change. This course will introduce generic models of innovation that span multiple sectors including: energy, environment, health, and bio- and information-technologies. The course also analyzes how governments choose policies, such as patents, to spur and shape innovation and its impacts on the economy and society. Students will be introduced to a global perspective on innovation policy including economic competitiveness, technology transfer and appropriate technology. Lecture 3 (Spring).
 Energy Policy
This course provides an overview of energy resources, technologies, and policies designed to ensure clean, stable supplies of energy for the future. The course evaluates the impacts of fossil fuel, renewable energy, and hydrogen technologies on society and how public policies can be used to influence their development. The development of U.S. energy policy is of particular concern, although a global perspective will be integrated throughout the course. Lecture 3 (Spring).
 Climate Change: Science, Technology and Policy
This multidisciplinary course will provide students with diverse perspectives on global climate change issues, providing a survey of important aspects of the problem. Topics include atmospheric chemistry, climate modeling, ecological impacts and feedbacks, economics of climate change, international climate policies, and social and environmental justice. The course will include a variety of instructors and guest lecturers, providing an overview of the complex and inter-related nature of global climate change. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 3 (Spring).
 Wicked Problems
This course will expose students to approaching and working on wicked problems - unstructured, multidisciplinary issues lacking clear right or wrong answers. The course will introduce key skills for handling unstructured problems such as whole systems thinking, estimation and assumptions, valuation, and problem solving techniques, with the majority of the semester focused on a specific topic (wicked problem) and team case study. Students will work in teams to research and address one aspect or subset of the wicked problem at hand to join collectively with the results of all teams to form a more complete overall solution to the wicked problem. (This class is restricted to undergraduate students with at least 3rd year standing.) Lecture 4 (Fall, Spring).
Introduction to Environmental Studies
This course explores the human condition within an environmental context by emphasizing critical environmental problems facing humans on both a global and regional scale. The approach will be interdisciplinary. The issues, their causes, and their potential solutions will be analyzed with respect to ethical, social, historical, political, scientific, and technological factors. Lecture 3 (Fall, Spring, Summer).
Science, Technology, and Values
This course explores the concepts and effects of science and technology on society, analyzes the relationship between science and technology, examines how each has come to play a major role today, and looks at how science and technology have affected and been affected by our values. This course also considers the environmental aspects of science and technology. Science and technology are often assumed to be value free, yet people, guided by individual and societal values, develop the science and technology. In turn, the choices people make among the opportunities provided by science and technology are guided by their individual values. Lecture 3 (Fall, Spring).
Science and Technology Policy
Examines how local, state, federal and international policies are developed to influence innovation, the transfer of technology and industrial productivity in the United States and other selected nations. Lecture 3 (Fall, Spring).
Environment and Society
This course introduces the interdisciplinary foundations of environmental science via an analysis of sustainability within a socio-cultural context. This is a required course for the environmental science degree program. Lecture 3 (Fall).
Social Consequences of Technology
Modern society is increasingly based on technology. With each advance due to technology, unanticipated problems are also introduced. Society must define and solve these problems or the advances may be diluted or lost. In this course we study several interactions between technology and the world in which we live. We investigate how various technologies developed and compare the expected effects of the new technologies with the actual results. Lecture 3 (Fall, Spring).
Face of the Land
Based on field trips and critical readings, this course explores how the land around us has been shaped and reshaped through a variety of geological forces and historical developments. By considering the natural landforms of the United States (and other countries, as appropriate), students see how the nature of land has determined its value. As technological innovations occur, old relationships with the land have been altered. Thus the course offers students a historical approach to the relationship of technology and society, as evidence by the landscape. The seminar format for this course will also advance students' writing, speaking, and research skills. Lecture 3 (Spring).
 History of Ecology and Environmentalism
This course explores the history of ecological science, from the eighteenth century to the present, and it features the political use of ecological ideas in environmental debates, from the 19th century to the present. We investigate how social and political ideas have influenced ecological science, how ecological concepts have influenced Western politics and society, and how different generations of ecological researchers have viewed their role in society. Lecture 3 (Fall).
 Energy and the Environment
This course will examine contemporary energy issues, with particular emphasis placed on the environmental implications associated with energy consumption and production. Students will learn about various energy technologies and fuels (including nuclear, coal, oil, natural gas, solar, biomass, and wind) and the environmental tradeoffs associated with each of these energy systems. Lecture 3 (Fall).
Environmental Policy
This course introduces students to federal, state, and local environmental policies and the various policy paths leading to their establishment. Students will understand how societal values inform the content of environmental policies and the impacts, in turn, of these policies on society. In addition, the class will explore how environmental economics informs the new tools of environmental policy. The course covers a range of environmental policies at the U.S. and international levels addressing problems such as air and water pollution, climate change, energy use, and community sustainability. Lecture 3 (Spring).
 Great Lakes
This course utilizes the Great Lakes Basin as an integrating context for understanding global environmental issues. Examining the basin through an interdisciplinary environmental lens the class applies social science approaches to environmental problem solving. Students assess the local, regional, national and international scope of Great Lakes environmental issues through lecture, role-play, and field experiences and consider the importance of government action, public policy, ethics, economics, sociology, history, and engineering while applying social science analysis skills such as surveys, interviews, and content analysis to better understand the depth of local environmental problems and their potential solutions. Environmental science majors prepare a proposal for an environmental consulting project. Lecture 3 (Fall).
 Biodiversity and Society
This course explores the problems, issues, and values stemming from the current massive loss of biodiversity. Various justifications for preserving or conserving biodiversity will be examined. Although principals of conservation biology are presented, the social/cultural dimensions of the issue will be emphasized. Lecture 3 (Spring).
 Sustainable Communities
The concept of sustainability has driven many national and international policies. More recently, we have become aware that unless we physical build and rebuild our communities in ways that contribute to sustainability, making progress toward that goal is unlikely. It is equally important to recognize the social aspects of sustainability. In addition, it is at the local level that the goals of equity (a key consideration in community sustainability), most often achieved through citizen participation and collaborative processes are most easily realized. This course will broaden students understanding of the concept of sustainability, particularly the concept of social sustainability. This course focuses on sustainability as a way to bring light to the connections between natural and human communities, between nature and culture, and among environmental, economic, and social systems. Working closely with local organizations, students will explore the applicability of theoretical concepts. Lecture 3 (Fall).
 Sustainable Building Design & Construction
Course material will focus on the design, engineering, and construction of sustainable buildings and how the construction manager guides the project team to meet the owner’s objectives of a sustainable facility. Students will explore the primary differences and similarities between the different green building rating systems, including the Leadership in Energy and Environmental Design (LEED) rating system developed by the U.S. Green Building Council. This course may be cross-listed with CONM-690; BSMS program students are advised to enroll in the graduate level course. Lecture 3 (Spring).
 Clean & Renewable Energy Systems & Sources
This course covers the first principles and fundamentals of clean and renewable energy systems and sources. Various quantum-mechanical and electromagnetic devices and systems will be analyzed, designed and examined using software and CAD tools. Topics include: geothermal, hydro, nuclear, solar, wind, and other energy sources. Societal, ethical, economical, and environmental aspects of nanotechnology-enabled clean energy and power are also discussed. (Corequisite: PHYS-212 or equivalent course.) Lecture 3 (Fall).
 Green Energy Systems
An alternative energy course that will cover all types of available sources such as hydroelectric power, wind energy, combustion turbines, active and passive solar, photovoltaic systems, fuel cells, combined heat and power systems, biomass, geothermal, ocean, and nuclear energy. Power electronic components (inverters and converters) and components necessary for connection to the electrical power grid will be discussed. Alternative energy storage systems will be analyzed. Also, economics, global warming, government regulations, and tax initiatives for green energy products will be discussed. (Prerequisites: (PHYS-111 or 1017-211) or (PHYS-211 or PHYS-211A or 1017-312 or 1017-312T or 1017-389) or equivalent course. Co-requisites: EEET-252 or equivalent course.) Lecture 2 (Biannual).
 Green Energy Systems Laboratory
Laboratory work to complement the lecture material covered in Green Energy Power Systems (EEET-251). Experiments in photovoltaic cells, wind turbines, and fuel cells will be investigated. Electrolysis will be used to generate hydrogen required in the fuel cell experiment. Connection to the grid is demonstrated using a three-phase synchronous generator and disconnect switchgear. (Co-requisites: EEET-251 or equivalent course.) Lab 2 (Biannual).
 Greenhouse Gas Management
 Sustainable Earth Resources
An introduction to geology from an earth resources-economic geology prospective, focusing on sustainability of green energy resources. Basic geology topics include earth materials, internal forces, and surface processes. Environmental topics include soil and water resources. Sustainability of earth resources is explored, including strategic and industrial minerals, long-term viability of fossil fuels, and the sustainability of minerals crucial for renewable energy production and storage. The course will also explore ethical issues associated with fossil fuel use, conflict mineral extraction, the uneven distribution of benefits associated with Earth resource extraction, and the uneven distribution of negative consequences, both environmental and social, of Earth resource extraction. Scientific and ethical questions will be discussed throughout the course. Lecture 3 (Fall).
 Social Responsibility and Environmental Sustainability
This course will introduce social responsibility concepts and approaches presented in key documents like the ISO 26000 Social Responsibility Standard and the Universal Bill of Human Rights, and will explore the web of relationships in which an organization or a community exists, with the objective of providing the foundational knowledge necessary to plan a strategy for closing the gap between the activities, products and services of the organization or community and the ecosystem within which it exists. Lecture 3 (Spring).
 Solid and Hazardous Waste Management
An examination of strategies and technologies to move an organization toward environmental sustainability, including resource use reduction, material substitution, process and product modification, and waste minimization; and for handling and managing wastes including treatment, storage, transport, and disposal storing solid and hazardous waste. Associated environmental impacts, regulatory concerns, technical feasibility, and costs are considered. (Prerequisites: ESHS-150 and CHMG-141 and CHMG-142 or equivalent courses.) Lecture 3 (Spring).
 Industrial Wastewater Management
This course investigates characteristics and sources of industrial wastewaters, related environmental impacts, regulatory implications, and technical considerations of current treatment and disposal methodologies. Students learn to identify appropriate methods, technologies, and sequences for source reduction, treatment and pretreatment, direct discharge, and management of treatment residuals. (Prerequisites: ESHS-150 and CHMG-141 and CHMG-142 or equivalent courses.) Lecture 3 (Fall).
 Sustainable World Water Supply
The World Health Organization estimates that one in eight people do not have access to a safe drinking water supply. The U.S. State Department has stated that armed conflict over water rights is possible on many of the world’s river systems including the Nile, Tigris/Euphrates, Brahmaputra-Jamuna, and Mekong. What is the cause of these problems and how will changes to the hydrologic cycle and world water supply brought about by climate change affect them? Students will learn about the hydrologic cycle, the general characteristics of surface water and groundwater, and global patterns of water use. Students will learn about the health, economic, and social consequences of drought and flooding, and the effect climate change is having on water supply in arid countries. Laws and government regulation of water withdrawal and use will be covered, as will techniques to extend the available water supply. Students will consider the positive and negative consequences of increasing the sustainability of the water supply through efficiency, conservation, inter-basin transfer, water use export, grey and black water reuse, urban runoff capture, and the creation of fresh water through desalination. Lecture 3 (Fall).
 Sustainable Food Systems
Food is a powerful lever to optimize human health and environmental sustainability on Earth. However, problems associated with food and our food production systems are currently threatening both people and planet. An immense challenge facing humanity is to provide a growing world population with healthy diets that are based on ethically managed and sustainable food systems. While global food production has generally kept pace with population growth, more than 820 million people still lack sufficient food, and many more consume either low-quality diets or too much food. To have any hope of meeting the central goal of the Paris Climate Agreement, which is to limit global warming to 2°C or less, our carbon emissions from agriculture and food waste must be significantly reduced. This course will examine the sustainability and ethical issues and weaknesses in our current global food system. Key topics will include the ethical failures and environmental impacts of different agricultural practices; the ethics of patenting seeds and developing GMO crops reliant on harmful pesticides; how processed food and packaging impact the environment; the social, health and environmental effects of various diets; how climate change is impacting agriculture; and ultimately how can we meet the nutritional needs of the planet in an ethical and sustainable manner. Lecture 3 (Fall).
 Air Emissions Management
This course will present an overview of industrial air pollution management, its sources, methods of reduction, control, and management. Students will become familiar with the history of air pollution, the chemistry and effects of pollutants, regulations and standards, and control technologies as well as developing analytical and quantitative skills necessary in air emissions management decision-making. This course is co-listed with ESHS-615; students may receive credit for ESHS-525 or ESHS-615, not both. (Prerequisites: ESHS-150 and (CHMG-141 or CHMG-111) or equivalent courses. Students cannot take and receive credit for this course if they have taken ESHS-615.) Lecture 3 (Spring).
 Sustainable Product Stewardship
This course examines the principles of sustainable product stewardship, including the ethical, legal, and economic issues that product manufacturers face as well as the relationship between products and sustainability. Students will learn and apply some environmental sustainability, health and safety analysis techniques used to identify and manage product environmental sustainability aspects as well as health and safety hazards. Students will use case studies to examine the concept of product stewardship management through product life cycle thinking and extended producer responsibility. (Students who have completed ESHS-665 Product Stewardship may not receive credit for this course.) Lecture 3 (Summer).
 Engineering and the Developing World
This course helps students develop a system of holistic thinking about engineering pursuits which includes the natural environment, humans as individuals, economics, culture, institutions, policies, and civil society. Topics include research, design, dissemination, and evaluation techniques of the Human Centered Design Methodology (also called Design Thinking), Systems Practice tools for understanding complex problems, comparison of competing economic viewpoints, and evaluation of project case studies for triple bottom line sustainability. The course will include an extensive community engaged experiential learning component with a community partner in the city of Rochester which requires periodic travel to the partner’s site for interviews and activities. The course project is intended to lead to ideas that can be continued into social impact design capstone projects for implementation. Lecture 3 (Spring).
Design for the Environment
This course will provide the student with systematic approaches for designing and developing environmentally responsible products. In particular, design trade-offs will be explored. (Prerequisites: ISEE-140 or ISEE-304 or MECE-304 or MECE-305 or students in SUSPRD-MN, ISEE-MS, SUSTAIN-MS, ENGMGT-ME, MECE-MS, MECE-ME, MIE-PHD programs.) Lecture 3 (Fall).
 Photovoltaic Science and Engineering
This course focuses on the principle and engineering fundamentals of photovoltaic (PV) energy conversion. The course covers modern silicon PV devices, including the basic physics, ideal and non-ideal models, device parameters and design, and device fabrication. The course discusses crystalline, multi-crystalline, amorphous thin films solar cells and their manufacturing. Students will become familiar with basic semiconductor processes and how they are employed in solar cells manufacturing. The course further introduces third generation advanced photovoltaic concepts including compound semiconductors, spectral conversion, and organic and polymeric devices. PV applications, environmental, sustainability and economic issues will also be discussed. Evaluations include assignments and exams, a research/term paper on a current PV topic. (This class is restricted to degree seeking students with at least 4th year level.) Lecture 3 (Spring).
 Alternative Energy
A technical introduction to alternative energy systems in the context of energy economics and conventional energy sources. Topics include solar thermal, PV, wind, ocean current and tides, geothermal, biomass, and fuel cells. Project in the course will allow students to develop and test an alternative energy system, component or device. Course is intended as first course in alternative energy for MET students. (Co-requisites: MCET-530 or equivalent course.) Lecture 3 (Spring).
 Plastics Manufacturing Technology
The course introduces fundamentals in plastic materials and processing technology to manufacture various plastic products in plastics industry. The course emphasizes new materials and process selections for engineering applications and design. (Prerequisites: MCET-210 or equivalent course and this class is restricted to students in MCET-BS or EMET-BS or MFET-BS or RMET-BS.) Lecture 3 (Fall).
 Plastics Product Design
The study of design guidelines for plastic products based on the interrelationships between design, the material selected, the manufacturing process selected, and the tooling to be used. Students may not take and receive credit for this course if they have already taken MCET-683. (Prerequisites: MCET-210 and MCET-211 or equivalent courses. Students cannot take and receive credit for this course if they have taken MCET-683.) Lecture 3 (Spring).
 Contemporary Issues: Energy and the Environment
This course introduces students to contemporary technologies in a specific field of mechanical engineering. In the process of exploring these technologies, the course teaches and applies skills related to communication, economic analysis, ethical analysis, and explores the positive and negative effects of technologies on our society and environment. Specific attention is focused on current events both domestically and internationally. (Prerequisite or Co-requisites: MECE-499 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS students.) Lecture 3 (Fall, Spring).
 Wind Turbine Engineering
This course covers wind turbine design, performance and theory. Topics include wind turbine performance and components, modeling and simulation of wind energy systems, assessment of available wind energy resources, and conducting wind energy system impact analysis. This course includes a team design project. (Prerequisites: MECE-110 and MECE-210 or equivalent courses and students in MECE-BS or MECEDU-BS or MECE-MN programs.) Lecture 3 (Fall or Spring).
 Sustainable Energy Use in Transportation
The transportation sector represents nominally a third of the total energy consumption in the US, and presently, over 90% of this comes from petroleum sources. Transportation is responsible for about a quarter of greenhouse gas emissions and is a major source for several criteria pollutants. This course will introduce students to engineering practices used to evaluate transportation technologies from the standpoint of sustainability with an emphasis on light duty vehicles. Several emerging technologies including battery and hybrid electric vehicles, fuel cell vehicles, and bio-fuels will be considered. Particular attention will be devoted to the energy efficiency and emissions of the technology at the both vehicle and the fuel source levels. Additionally, the economic and social impacts will be examined. No text book will be assigned, and instead we will rely on open-access publications, journal articles, and electronic text available through the library. Approved as applied elective for the Energy & Environment Option and for the Automotive Option. (Prerequisites: This course is restricted to MECE-BS Major students. Co-requisites: MECE-305 or equivalent course.) Lecture 3 (Spring).
Renewable Energy Systems
This course provides an overview of renewable energy system design. Energy resource assessment, system components, and feasibility analysis will be covered. Possible topics to be covered include photovoltaics, wind turbines, solar thermal, hydropower, biomass, and geothermal. Students will be responsible for a final design project. (Prerequisites: MECE-310 or equivalent course. This course is restricted to MECE-BS or MECEDU-BS students.) Lecture 3 (Fall).
Packaging Sustainability and the Environment
Consideration of packaging in a social context. Factors that enhance secondary use, recycling, recovery of resources, and proper disposal are discussed. Package design in relation to solid waste disposal and materials and energy shortages are considered. Other topics of interest are discussed. Primarily a discussion class for senior students. Open to undergraduate non-majors. (Prerequisites: (PACK-301 and PACK-302 ) or (PACK-311 and PACK-312) or equivalent courses.) Lecture 3 (Fall).

* Students majoring in industrial engineering must complete a technical elective in place of ISEE-345.