Chemistry Minor

031dd850-f90e-42d9-be08-2459be696d78 | 86051

Overview

Chemistry is intrinsically a part of our society from the fuels we use, the air we breathe, and the water we drink to the complex chemical behaviors of our own bodies. Chemistry is involved in the development of myriad materials such as computer chips, packaging materials, and alternative fuels. Increasing numbers of policy and ethical choices facing the global community involve issues where chemistry plays a pivotal role. This minor provides students with the opportunity to study chemistry in order to build a secondary area of expertise in support of their major or as an additional area of interest.

Notes about this minor:

  • This minor is closed to students majoring in biochemistry and chemistry.
  • Posting of the minor on the student's academic transcript requires a minimum GPA of 2.0 in the minor.
  • Notations may appear in the curriculum chart below outlining pre-requisites, co-requisites, and other curriculum requirements (see footnotes).

Curriculum

Course
Prerequisites
CHMG-141
General and Analytical Chemistry I
This is a general chemistry course for students in the life and physical sciences. College chemistry is presented as a science based on empirical evidence that is placed into the context of conceptual, visual, and mathematical models. Students will learn the concepts, symbolism, and fundamental tools of chemistry necessary to carry on a discourse in the language of chemistry. Emphasis will be placed on the relationship between atomic structure, chemical bonds, and the transformation of these bonds through chemical reactions. The fundamentals of organic chemistry are introduced throughout the course to emphasize the connection between chemistry and the other sciences.
CHMG-145
Chemical Principles I Laboratory
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-141 lecture material. The course emphasizes laboratory techniques and data analysis skills. Topics include: gravimetric, volumetric, thermal, titration and spectrophotometric analyses, and the use of these techniques to analyze chemical reactions.
CHMG-142
General and Analytical Chemistry II
The course covers the thermodynamics and kinetics of chemical reactions. The relationship between energy and entropy change as the driving force of chemical processes is emphasized through the study of aqueous solutions. Specifically, the course takes a quantitative look at: 1) solubility equilibrium, 2) acid-base equilibrium, 3) oxidation-reduction reactions and 4) chemical kinetics.
CHMG-146
Chemical Principles II Laboratory
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-142 lecture material. The course emphasizes the use of experiments as a tool for chemical analysis and the reporting of results in formal lab reports. Topics include the quantitative analysis of a multicomponent mixture using complexation and double endpoint titration, pH measurement, buffers and pH indicators, the kinetic study of a redox reaction, and the electrochemical analysis of oxidation reduction reactions.
Required Courses
CHMO-231
Organic Chemistry I
This course is a study of the structure, nomenclature, reactions and synthesis of the following functional groups: alkanes, alkenes, alkynes. This course also introduces chemical bonding, IR and NMR spectroscopy, acid and base reactions, stereochemistry, nucleophilic substitution reactions, and alkene and alkyne reactions. In addition, the course provides an introduction to the use of mechanisms in describing and predicting organic reactions.
CHMO-235
Organic Chemistry I Lab
This course trains students to perform techniques important in an organic chemistry lab. The course also covers reactions from the accompanying lecture CHMO-231.
CHMO-232
Organic Chemistry II
This course is a continuation of the study of the structure, nomenclature, reactions and synthesis of the following functional groups: aromatic systems, alcohols, ethers, epoxides, and carbonyls. This course will introduce the use of mechanisms in describing and predicting organic reactions.
CHMO-236
Organic Chemistry II Lab
This course teaches students to apply basic lab techniques to organic synthetic experiments reactions covered in the accompanying lecture COS-CHMO-232. This course will also help students to solidify the concepts taught in lecture. The course will continue to instruct students in maintaining a professional lab notebook.
Electives
Choose from the following:*
  CHEM-301
   Undergraduate Teaching Experience†
This course allows students to assist in a class or laboratory for which they have previously earned credit. The student will assist the instructor in the operation of the course. Assistance by the student may include fielding questions, helping in workshops, and assisting in review sessions. In the case of labs, students may also be asked to help with supervising safety practices, waste manifestation, and instrumentation.
  CHEM-493
   Undergraduate Research Experience†
This course is a faculty-directed student project or research in chemistry that could be considered of an original nature.
  CHEM-495
   Advanced Undergraduate Research Experience†
This course is a faculty-directed student project or research involving laboratory work, computer modeling, or theoretical calculations that could be considered of an original nature. The level of study is appropriate for students in their final two years of study.
  CHMO-636
   Spec. ID of Organic Compounds
This course covers the theory and application of proton, carbon-13, and correlation nuclear magnetic resonance, infrared, and mass spectrometry for organic structure determination.
   CHMO-637
   Advanced Organic Chemistry
This course will revisit many of the reactions covered in the first year of organic chemistry with an emphasis on stereochemical control. Students will be introduced to the technique of retrosynthesis. The course will introduce more reactions with an emphasis on current topics from the literature. Students will hone their skills in writing electron pushing mechanisms and the use of protecting groups while practicing the art of designing synthetic strategies for making natural products.
  CHMO-640
   Mechanisms of Drug Interactions
Drugs are naturally occurring or synthetic substances that upon exposure to a living organism form complexes with biological targets. These complexes result in a characteristic pharmacological effect which alter physiological functions or counteract environmental insults. The goal of this course is to systematically study drug discovery, lead optimization, drug-receptor interactions, and bioavailability. Historically important drug classes and their mechanism of action will receive special consideration.
  CHMO-710
   Literature Explorations in Organic Synthesis
This course will be a survey of the recent literature in organic chemistry with a focus on the chemistry concerning the synthesis of natural products and/or methodology towards synthesizing natural products. During each week of the course a student is selected to lead a discussion based on an article from a premier journal. This course may be repeated for credit.
   CHMO-739
   Advanced Physical Organic Chemistry
This course covers topics in physical organic chemistry including: techniques for elucidation of mechanism (kinetic, and linear free energy relationships); isotope effects; molecular orbital theory; and electrocyclic reactions.
   CHMA-161
   Quantitative Analysis
This course will introduce students to quantitative methods. The course will cover gravimetric techniques, equilibria, statistical methods, and solution chemistry. In addition, equilibrium for polyprotic acids, electrochemistry and potentiometry will be discussed.
   CHMA-261
   Instrumental Analysis
This course presents a preliminary treatment of instrumental theory and technique. The course will cover the theory and implementation of spectroscopic, mass spectrometric, and chemical separations instrumentation and techniques. Instrumental techniques include: atomic and molecular emission and absorption and emission spectroscopies, atomic and molecular mass spectrometry, gas chromatography, and high performance liquid chromatography.
  CHMA-621
   Advanced Instrumental Analysis Lab
This is a capstone course requiring students to develop experimental protocols involving advanced techniques in instrumental analysis. This course is intended to give an opportunity to develop innovative skills and writing proficiency. Library, literature and textbook research will be required.
   CHMA-711
   Advanced Instrumental Analysis
The theory, applications, and limitations of selected instrumental methods in qualitative, quantitative and structural analysis will be discussed. This course is also intended to give an opportunity to develop writing and revising abilities, as well as communication skills. Library, literature, and textbook research will be required.
  CHMA-740
   Practical NMR
A graduate level lecture and laboratory course designed to teach a student how to use a Bruker high-resolution NMR spectrometer to perform a variety of chemical analyses. Students are presented a series of brief descriptions of how to perform various functions and experiments on a Bruker NMR. Students then receive hands-on training and perform the experiment. Specific operations taught include: file management, magnet shimming, probe tuning, parameter optimization, pulse sequence development, one-dimensional and two-dimensional acquisitions, variable temperature studies, data processing, diffusion measurements, and measuring relaxation times. This course serves as mechanism to gain different levels of access to the Chemistry Department's NMR spectrometers.
   CHMB-402
   Biochemistry I
This course introduces the structure and function of biological macromolecules and their metabolic pathways. The relationship between the three-dimensional structure of proteins and their function in enzymatic catalysis will be examined. Membrane structure and the physical laws that apply to metabolic processes will also be discussed.
  CHMB-460
   Infectious Disease: Impact in Society and Culture
This course investigates the mechanisms of pathogenesis of bacterial, viral, and other microbial infectious agents. This course also covers the historical, social, and cultural impact that these infectious diseases have had on society. Topics may include: antibiotics and antibiotic resistance, vaccines, gut microflora and health, foodborne illnesses, bioterrorism, HIV, tuberculosis, malaria, and staph infections.
  CHMB-493
   Biochemistry Research
This course is a faculty-directed student project or research in biochemistry that could be considered of an original nature.
  CHMB-495
   Advanced Biochemistry Research
This course is a faculty-directed student project or research involving laboratory work, computer modeling, or theoretical calculations that could be considered of an original nature. The level of study is appropriate for students in their final two years of study.
   CHMB-610
   Advanced Protein Biochemistry: Structure and Function
This course analyzes protein structure function relationships. Students will investigate how proteins function and how the structure relates to that function. The principles that explain enzyme rate enhancements and mechanistic enzymology will be examined. Additionally, protein superfamilies for phylogenetic relationships will be explored to enhance understanding of protein structure-function relationships. Students will read and discuss the current scientific literature and classic papers.
   CHMI-351
   Descriptive Inorganic Chemistry
This course covers descriptive inorganic reactions in terms of periodic trends. Topics will include nucleosynthesis and the birth of the universe, applications used in large-scale industrial processes and their environmental impacts, nanostructured materials, and bonding theory will also be discussed. A detailed study of solid-state chemistry and structure will also be addressed.
   CHMI-464
   Structural Inorganic Chemistry
  CHMI-764
   Modern Inorganic Chemistry
   CHMP-441
   Physical Chemistry I
This course provides fundamental concepts, and organizing principles, applied in all aspects of chemistry and related fields. A rigorous and detailed explanation of central, unifying concepts in thermodynamics and chemical kinetics will be developed. Mathematical models that provide quantitative predictions will be described for thermodynamics and chemical kinetics. These contain the mathematical underpinnings to concepts applied in analytical, inorganic, organic, and biochemistry courses, as well as more advanced topics in chemistry. The course will cover: gases, temperature, energy and the First Law of Thermodynamics, entropy and the Second and Third laws, Helmholtz and Gibbs free energies, criteria for equilibrium and spontaneity, chemical equilibrium, electrochemistry, kinetic molecular theory and chemical kinetics.
   CHMP-442
   Physical Chemistry II
This course provides fundamental concepts, and organizing principles of quantum chemistry, applied in all aspects of chemistry and related fields. A rigorous and detailed explanation of central, unifying concepts in quantum chemistry will be developed. Mathematical models will be described, which contain the underpinnings to concepts applied in analytical, inorganic, organic, and biochemistry courses, as well as more advanced topics in chemistry. The course will cover: Postulates and formulation of Schrödinger equations, Operators and matrix elements, Solutions for the particle-in-a-box, simple harmonic oscillators, the rigid rotor and angular momentum, the hydrogen atom; spin, the Pauli principle. Approximation methods will be described for the helium atom, the hydrogen molecule ion, the hydrogen molecule, Diatomic molecules. Linear combinations of atomic orbitals and computational chemistry will be introduced and quantum chemistry applications will be provided. In addition this course will cover standard thermodynamic functions expressed in partition functions and spectroscopy and light-matter interaction
  CHMP-751
   Colloid and Interface Science
The parallel growth of nanotechnology and a molecular perspective in the medical and life sciences has focused attention on the colloidal domain structures of dimension 1 nm to 1 mm. This course will introduce colloid and interface science that will allow for an appreciation of the role of colloids in biological systems, industrial processes and commercial products.
   CHMP-752
   Molecular Photophysics and Photochemistry
This course provides a comprehensive and clear description of the concepts and principles of molecular photophysical processes and photochemistry. The practical methods required for associated photophysical characterization and measurement are presented along with important applications of molecular photonics in cutting-edge research. A review of quantum mechanics is given with the photochemist in mind such that the student is encouraged to make more use of quantum mechanical terms, quantities and concepts. The course covers the interaction of light with molecular orbitals to form an excited state, and its subsequent de-activation. Applications such as lasers, spectroscopy, photoinduced charge transfer in modern organic photovoltaics and photosynthesis are described.
   CHMP-753
   Computational Chemistry
This course will introduce students to an in-depth investigation into the computational theories and applications used to model complex physical and chemical phenomena. Computational methods are used to provide synergy linking experiment with theory involving such chemical processes as reaction mechanisms, docking, energy transfer and conformational conversions. Predicting spectral and thermodynamic properties of molecular systems and ensembles will also be treated.
   CHPO-706
   Polymer Chemistry I
Comprehensive Polymer Chemistry is an in depth survey of contemporary chemistry involved in the synthesis of high molecular weight polymers and macromolecules and the relationships between their structure, functionality and applications. The course is focused on organic chemistry of polymers and macromolecules and the fundamental principles that govern chain structure and statistics, solution behavior, characterization of polymers, and swollen gels and soft matter. Specific attention is given to recent advances and current issues in the synthesis of polymer of controlled architecture and self-assembly of polymers and macromolecules.
   CHPO-707
   Polymer Chemistry II
This course further investigates the contemporary chemistry of high molecular weight polymers and macromolecules and the relationships between their structure, functionality, and utility. The course focuses on fundamental principles that govern swollen gels and soft matter. Mechanisms of the formation of polymers containing heteroatoms in their chains are examined in detail. Specific attention is given to the synthesis of polymers of controlled architecture and self-assembly, and of polymers and macromolecules. Dendrimers, hyper-branched polymers, functional polymers, polymeric reagents, polyelectrolytes, and biopolymers are also discussed.

* A total of nine semester credit hours of electives is required, with at least three credits at the 400-level or above

† Students may use Undergraduate Teaching Experience (CHEM-301), Biomedical Research (CHEM-493), Biochemistry Research (CHMB-493), and Advanced Undergraduate Research Experience (CHMB-495) to satisfy up to 3 of the 9 credit hours required for the elective courses. The remaining 6 credit hours must come from other courses on the electives list.