School of Chemistry and Materials Science

Overview

Chemistry has revolutionized modern society through synthesizing new materials and probing the fundamental processes of life. RIT offers undergraduate and graduate degree programs that prepare you for professional work in both research laboratory and industrial settings. The materials science graduate program seeks to provide solutions for a number of different fields including energy, medicine, clothing, and equipment production.

10

New or renovated labs for teaching research

27.6K

Square feet of teaching, research laboratories, and support facilities

94%

Of our graduates spent at least two semesters experiencing outside-of-classroom learning

Latest News

Research

Additive manufacturing is fabrication process whereby materials are deposited, rather than removed as in subtractive manufacturing, to create a functional part or device. Since parts are fabricated “bottom-up”, benefits include less material consumption and waste. Additive manufacturing requires precise coordination between material properties and the application process. The physical and chemical behaviors of ink materials and substrates must match process specifications in order to produce device or part functionality. Research efforts at RIT touch on the entire additive manufacturing workflow from functional material design and synthesis to ink formulation, deposition and energy curing. Particular emphasis is directed toward nano-material design and function.

Research Active Faculty:

Denis Cormier headshot
Professor
Department of Industrial and Systems Engineering
Kate Gleason College of Engineering
Program Faculty, School of Chemistry and Materials Science
585-475-2713

Thomas Trabold
Department Head
Department of Sustainability
Golisano Institute for Sustainability

David Borkholder 
Professor
Department of Electrical and Microelectronic Engineering
Kate Gleason College of Engineering

Biochemists study fundamental life processes at the molecular level, exploring the chemistry, structure, and biological significance of proteins, nucleic acids, lipids, and carbohydrates, along with the small molecules (metabolites) that control their behaviors. Discoveries made using biochemical approaches can be used to identify new drug targets to prevent or cure diseases, to develop vaccines against emerging diseases, to design new drugs and therapeutics based on the structures of proteins or nucleic acids, to develop new molecular tools for evaluating and elucidating cellular function, and to better understand the biochemical roles that  biomolecules play in health and disease.

Research Active Faculty:

Lea Michel headshot
Associate Professor
School of Chemistry and Materials Science
College of Science
585-475-4273

Discipline-Based Education Research (DBER) is a scholarly field that combines disciplinary expertise in a STEM field (physics, chemistry, biology, etc.) with research methods from cognitive science, psychology and the learning sciences. Researchers in this field are interested in studying and transforming STEM Education through basic and applied research. Faculty in the School of Chemistry and Materials Science are (1) designing, implementing, and evaluating novel instructional methods for organic chemistry lab and biochemistry lab instruction, (2) Quantitatively  evaluating the fidelity of implementing new teaching methods across a variety of institutions, (3) Exploiting the benefits of using our hands as models when learning abstract chemistry concepts, and (4) Evaluating the effectiveness of research mentoring techniques on student learning, motivation, and sense of belonging. DBER faculty in chemistry and biochemistry engage many undergraduate students on their research teams and actively disseminate their research at conferences and through peer-reviewed publications.

Research Active Faculty:

Lea Michel headshot
Associate Professor
School of Chemistry and Materials Science
College of Science
585-475-4273

Materials Scientists use the principals of chemistry, physics and engineering to create and characterize new materials. They study the behavior of materials under stress, including physical strain and corrosion. They create new materials with unique properties, including renewable resources. They create new types of metals, ceramics, glass and polymers, including biomaterials and nanomaterials. Materials Scientists also build devices that contribute solutions to our energy challenges, such as organic photovoltaic solar cells.

Research Active Faculty:

Matt Miri headshot
Associate Professor
School of Chemistry and Materials Science
College of Science
585-475-6004

Organic photovoltaic devices (OPV) provide an option for low cost, flexible, and non-toxic (no lead or cadmium) renewable energy. Organic materials can be modified to increase light absorption, energy transfer, conductivity and to reduce costs of manufacture. Molecular structure can be changed for aesthetically pleasing colors and artistic design, with devices being semitransparent or transparent, valuable for building integration or in applications such as smart windows. Furthermore, a growing number of exciting new polymer donors and non-fullerene molecular acceptors has spearheaded a major resurgence in OPV in recent years.

OPV research provides a wonderful intersection point between synthetic chemistry, predictive computational materials design, and the physical chemistry that is used to describe the mechanism of operation.

Research Active Faculty:

 

Featured Work

Undergraduate Programs

RIT’s chemistry and biochemistry programs feature rigorous, in-depth curricula that remain flexible enough to allow students to specialize in several other related fields. We offer robust undergraduate research and laboratory teaching experience opportunities, often as early as freshman year, with faculty mentorship and state-of-the-art facilities and instrumentation.

The biochemistry major focuses on the chemistry of living things to prepare you to address current challenges facing the chemical, pharmaceutical, agricultural, forensic, and biotechnological fields. 

Learn More about Biochemistry BS 

In RIT's chemistry degree, you'll search for and use new knowledge about chemicals to discover, develop, or improve synthetic fibers, paints, adhesives, drugs, cosmetics, electronic components, lubricants, and thousands of other products.

Learn More about Chemistry BS 

Graduate Programs

Our chemistry and materials science and engineering graduate programs prepare professional scientists by offering curricula that allow students to specialize in their chosen fields while engaging in rigorous, meaningful research using state-of-the-art instrumentation and facilities, under the guidance of a faculty mentor.

A chemistry master's degree that prepares you for jobs in countless industries and for Ph.D. programs in chemistry. Maximize your career potential by gaining skills that are transferable to any field of interest.

Learn More about Chemistry MS 

A graduate certificate in materials science and engineering that develops a foundation of materials-oriented knowledge, conceptualization, product development, and production decisions needed to strive in engineering.

Learn More about Materials Science and Engineering Adv. Cert. 

The materials science master's degree explores a fascinating area of study that contributes solutions to challenges facing fields as diverse as energy, medicine, clothing, and sporting equipment.

Learn More about Materials Science and Engineering MS 

Minors and Immersions

All of the required or optional courses for the chemistry immersion are core chemistry courses within the chemistry curriculum.

Learn More about Chemistry Immersion 

Chemistry is intrinsically a part of our society from the fuels we use, the air we breathe, and the water we drink to the complex chemical behaviors of our own bodies. Chemistry is involved in the development of myriad materials such as computer chips, packaging materials, and alternative fuels. Increasing numbers of policy and ethical choices facing the global community involve issues where chemistry plays a pivotal role. This minor provides students with the opportunity to study chemistry in order to build a secondary area of expertise in support of their major or as an additional area of interest.

Learn More about Chemistry Minor 

Student Resources

Here you will find additional resources for the School of Chemistry and Materials Science, such as research scholar information, student handbooks, tutoring, forms, clubs/communities , etc.

See Resources