Applied Statistics Master of science degree

880b91bc-e15f-4ac3-ae52-b50831477eb7 | 86023

Overview

Online Option

Apply the skills learned in statistical analysis to a variety of industries, including insurance, marketing, government, health care, and more.


The MS in applied statistics focuses on data mining, design of experiments, health care applications, and the application of statistics to imaging and industrial environments. You’ll integrate knowledge learn through engaging courses to solve more complex problems for a wide range of organizations, including industrial, marketing, education, insurance, credit, government, and health care.

The MS program in applied statistics is available to both full- and part-time students with courses available both on-campus and online. Cooperative education is optional. The program is intended for students who do not wish to pursue a degree beyond the MS. However, a number of students have attained doctorate degrees at other universities.

Plan of study

The program requires 30 credit hours and includes four core courses, electives, and a capstone or thesis.

Core courses

Students are required to complete four core courses: Statistical Software (STAT-611), Regression Analysis (STAT-741), Fundamentals of Statistical Theory STAT-731, and Foundations of Experimental Design (STAT-701). Students, in conjunction with their advisers’ recommendations, should take the core courses early in the program.

Electives, capstone, or thesis

Elective courses are chosen by the student with the help of their advisor. These courses are usually department courses but may include (or transferred from other universities) up to 6 credit hours from other departments that are consistent with students’ professional objectives. The capstone course is designed to ensure that students can integrate the knowledge from their courses to solve more complex problems. This course is taken near the end of a student’s course of study. Students, with advisor approval, may write a thesis as their capstone. A thesis may be 3 or 6 credit hours. If a student writes a 6 credit hour thesis, they would be required to complete four elective courses instead of five.

Areas of concentration
  • Predictive Analytics
  • Data Mining/Machine Learning
  • Industrial
  • Clinical Statistics

Industries


  • Insurance

  • Government (Local, State, Federal)

  • Investment/Portfolio Management

  • Health Care

  • Defense

  • Scientific and Technical Consulting

  • Biotech and Life Sciences

  • Telecommunications

Typical Job Titles

Quality Engineer Reliability Analyst
Quality Manager Statistical Consultant
Continuous Improvement Engineer Data Science Consultant

Curriculum

Applied Statistics, MS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
STAT-611
Statistical Software
This course is an introduction to two statistical-software packages, SAS and R, which are often used in professional practice. Some comparisons with other statistical-software packages will also be made. Topics include: data structures; reading and writing data; data manipulation, subsetting, reshaping, sorting, and merging; conditional execution and looping; built-in functions; creation of new functions or macros; graphics; matrices and arrays; simulations; select statistical applications.
3
STAT-631
Foundations of Statistics Theory
This course introduces principles of probability and statistics with a strong emphasis on conceptual aspects of statistical inference. Topics include fundamentals of probability, probability distribution functions, expectation and variance, discrete and continuous distributions, sampling distributions, confidence intervals and hypothesis tests.
3
STAT-641
Applied Linear Models - Regression
A course that studies how a response variable is related to a set of predictor variables. Regression techniques provide a foundation for the analysis of observational data and provide insight into the analysis of data from designed experiments. Topics include happenstance data versus designed experiments, simple linear regression, the matrix approach to simple and multiple linear regression, analysis of residuals, transformations, weighted least squares, polynomial models, influence diagnostics, dummy variables, selection of best linear models, nonlinear estimation, and model building.
3
STAT-642
Applied Linear Models - ANOVA
3
 
Electives
6
Second Year
 
Electives
9
STAT-790
Capstone Thesis/Project
This course is a graduate course for students enrolled in the Thesis/Project track of the MS Applied Statistics Program. (Enrollment in this course requires permission from the Director of Graduate Programs for Applied Statistics.)
3
Total Semester Credit Hours
30

Admission Requirements

To be considered for admission to the MS program in applied statistics, candidates should fulfill the following requirements:

  • Complete a graduate application.
  • Hold a baccalaureate degree (or equivalent) from an accredited university or college.
  • Have satisfactory background in mathematics (one year of differential equations and integral calculus) and statistics (two courses in probability and statistics). 
  • Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
  • Have knowledge of a programming language.
  • Have a minimum cumulative GPA of 3.0 (or equivalent) (recommended but not required).
  • GRE scores are not required. However, in cases where there may be some question regarding the capability of the applicant to complete the program. Applicants may be asked to submit scores to strengthen their application.
  • Submit a current resume or curriculum vitae.
  • Submit two letters of recommendation from academic or professional sources.
  • International applicants whose native language is not English must submit scores from the TOEFL, IELTS, or PTE. A minimum TOEFL score of 79 (internet-based) is required. A minimum IELTS score of 6.5 is required. The English language test score requirement is waived for native speakers of English or for those submitting transcripts from degrees earned at American institutions.

 

Learn about admissions and financial aid 

Additional Info

Grades

Students must attain an overall program grade-point average of 3.0 (B) for graduation.

Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Gainful Employment

Information regarding costs and the U.S. Department of Labor’s Standard Occupational Classification (SOC) code and occupational profiles for this program can be viewed on the ED Gainful Employment Disclosure Template.