Biotechnology and Molecular Bioscience Bachelor of science degree

dbb17b36-ee5c-4a6b-89ab-5010b2f3ab70 | 85955

Overview

Harness technology advancements and biomolecular processes to research and develop technologies in genetics, agriculture, pharmaceuticals and vaccine development, environment and energy, forensic science, genetic counseling, and more to improve human health.


The biotechnology degree prepares you to immediately assume challenging positions in research, development, and management in the fields of plant biotechnology, human genetics, agriculture, food products, pharmaceuticals and vaccine development, environment and energy, forensic science, and genetic counseling. Meaningful research projects preparing you to gain valuable experience for full-time employment or to pursue graduate study.

The advanced nature of the third- and fourth-year courses, as well as the opportunity to participate in faculty-sponsored undergraduate research, provide a sound foundation to those students wishing to pursue a master’s or doctoral degree. The major also can be designed to include the education necessary for the pursuit of a career in the medical field.

Specialized areas of emphasis include recombinant DNA, microbial and plant genetic engineering, mammalian and plant tissue culture, monoclonal antibody production and purification, large-scale fermentation techniques (bacterial and mammalian cell), and methods for characterization and separation of proteins and nucleic acids in yeast, bacterial, viral, and plant systems.

As a student enrolled in the biotechnology and molecular bioscience program at RIT you’ll be exposed to dynamic professors who are leaders in their fields both in the classroom and in the laboratory.

Plan of Study

Building on a core of biology, chemistry, math, and liberal arts, the courses in this major are taught from a molecular bioscience perspective and are focused on the central genetic dogma of molecular biology. The curriculum explores the rapidly-expanding field of genetic engineering and almost unlimited potential that controlled genetic experiments hold for improving the quality of life. Specialized areas of interest include recombinant DNA, mammalian and plant tissue culture, and monoclonal antibody production.

Real World Experiences

Undergraduate research is strongly encouraged and strengthens your preparation for graduate study or employment. You’re encouraged to participate in undergraduate research experience under the guidance of faculty mentors.   You’re also encouraged to apply for summer research internships both here at RIT and at other institutions.

You also have the option to pursue co-operative education placement in research, lab support, or data analysis in private businesses, government agencies, and non-profit organizations.  RIT Biotechnology and Molecular Biosciences students have worked at pharmaceutical companies, academic research laboratories, Biotechnology companies, and National Laboratories. To learn more or review co-op position openings, visit the RIT Office for Cooperative Education and Career Services.

Nature of Work

Do you want to learn about the natural world on a molecular level? Do you want to learn how cells and living organisms can be harnessed to improve scientific knowledge and human health? Biotechnology is the area of science that uses living systems to create products and new technologies. Biotechnologists play important roles in biomedical research, agriculture, food safety, pharmaceutical and vaccine development and more.

Advantages

The Biotechnology and Molecular Science program prepares our graduates for post-secondary education, employment in biotech and research laboratories and medical school.

Experiential learning

Students are strongly encouraged to explore experiential learning opportunities to further enhance their education. Research internships, offered both on and off-campus, take place during the summer. RIT offers numerous opportunities for students to participate in research, including three on-campus summer programs: Research Experiences for Undergraduates (REU), Summer Undergraduate Research Fellowships (SURF), and the Summer Undergraduate Research Programs (SURP). Many students participate in undergraduate research for course credit during the academic year. Additionally, students may participate in cooperative education experiences, where students work in industry or government during the summer or the academic year. Students earn a salary while gaining valuable on-the-job experience. If a student elects to pursue a co-op during the academic year, they may need to extend the date of graduation beyond the traditional four years.

Industries


  • Biotech and Life Sciences

  • Health Care

  • Medical Devices

  • Pharmeceuticals

Typical Job Titles

Research Assistant Laboratory Technician
Clinical Lab Technologist Research Associate
Biologist Sales Representative
Technical Writer Process Developer
Genetic Counselor Forensic Analyst
Molecular Biologist Medical and Clinical Laboratory Technician
Microbiologist Agricultural and Food Science Technician

Latest News

Curriculum

Biotechnology and molecular bioscience, BS degree, typical course sequence

Course Sem. Cr. Hrs.
First Year
BIOL-121
Introduction to Biology 
This course serves as an introduction to molecular biology, cellular biology, genetics, developmental biology, and evolutionary biology. Topics will include: a study of the basic principles of modern cellular biology, including cell structure and function; the chemical basis and functions of life, including enzyme systems and gene expression; and both the processes and patterns of the organismal development (ontogeny) and the evolution of life on Earth (phylogeny). Laboratory experiments are designed to illustrate concepts of basic cellular, molecular, developmental, and evolutionary biology, develop laboratory skills and techniques for microscopy and biotechnology, and improve ability to make, record and interpret observations.
4
CHMG-141
LAS Perspective 5 (natural science inquiry): General and Analytical Chemistry I
This is a general chemistry course for students in the life and physical sciences. College chemistry is presented as a science based on empirical evidence that is placed into the context of conceptual, visual, and mathematical models. Students will learn the concepts, symbolism, and fundamental tools of chemistry necessary to carry on a discourse in the language of chemistry. Emphasis will be placed on the relationship between atomic structure, chemical bonds, and the transformation of these bonds through chemical reactions. The fundamentals of organic chemistry are introduced throughout the course to emphasize the connection between chemistry and the other sciences.
3
CHMG-145
LAS Perspective 5 (natural science inquiry): General and Analytical Chemistry I Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-141 lecture material. The course emphasizes laboratory techniques and data analysis skills. Topics include: gravimetric, volumetric, thermal, titration and spectrophotometric analyses, and the use of these techniques to analyze chemical reactions.
1
BIOL-122
Introduction to Biology II
4
CHMG-142
LAS Perspective 6 (scientific principles): General and Analytical Chemistry II
The course covers the thermodynamics and kinetics of chemical reactions. The relationship between energy and entropy change as the driving force of chemical processes is emphasized through the study of aqueous solutions. Specifically, the course takes a quantitative look at: 1) solubility equilibrium, 2) acid-base equilibrium, 3) oxidation-reduction reactions and 4) chemical kinetics.
3
CHMG-146
LAS Perspective 6 (scientific principles): General and Analytical Chemistry II Lab
The course combines hands-on laboratory exercises with workshop-style problem sessions to complement the CHMG-142 lecture material. The course emphasizes the use of experiments as a tool for chemical analysis and the reporting of results in formal lab reports. Topics include the quantitative analysis of a multicomponent mixture using complexation and double endpoint titration, pH measurement, buffers and pH indicators, the kinetic study of a redox reaction, and the electrochemical analysis of oxidation reduction reactions.
1
MATH-161
LAS Perspective 7A: Applied Calculus
This course is an introduction to the study of differential and integral calculus, including the study of functions and graphs, limits, continuity, the derivative, derivative formulas, applications of derivatives, the definite integral, the fundamental theorem of calculus, basic techniques of integral approximation, exponential and logarithmic functions, basic techniques of integration, an introduction to differential equations, and geometric series. Applications in business, management sciences, and life sciences will be included with an emphasis on manipulative skills.
4
ACSC-010
Year One
The Year One class serves as an interdisciplinary catalyst for first-year students to access campus resources, services and opportunities that promote self-knowledge, personal success, leadership development, social responsibility and life academic skills awareness and application. Year One is also designed to challenge and encourage first-year students to get to know one another, build relationships and help them become an integral part of the campus community.
0
 
LAS Perspective 1 (ethical)
3
 
First Year LAS Elective
3
 
First Year Writing (WI)
3
 
Wellness Education*
0
Second Year
BIOL-201
Cell and Molecular Biology w/ Lab
This course will address the fundamental concepts of Cellular and Molecular Biology. Lectures, assignments, and laboratory projects will explore the structure and function of molecules, organelles, and cells and the biological processes they are involved in. Students in this course will gain an understanding of various molecular mechanisms, structure/function relationships, and cellular processes as they relate to cellular and molecular biology. Students in this course will practice and carry out common laboratory techniques used by Cellular and Molecular Biologists including, recombinant DNA technology, cell trafficking, and cloning techniques.
4
CHMO-231
Organic Chemistry I
This course is a study of the structure, nomenclature, reactions and synthesis of the following functional groups: alkanes, alkenes, alkynes. This course also introduces chemical bonding, IR and NMR spectroscopy, acid and base reactions, stereochemistry, nucleophilic substitution reactions, and alkene and alkyne reactions. In addition, the course provides an introduction to the use of mechanisms in describing and predicting organic reactions.
3
CHMO-235
Organic Chemistry I Lab
This course trains students to perform techniques important in an organic chemistry lab. The course also covers reactions from the accompanying lecture CHMO-231.
1
Choose one of the following:
3
   STAT-145
   LAS Perspective 7B: Introduction to Statistics
This course introduces statistical methods of extracting meaning from data, and basic inferential statistics. Topics covered include data and data integrity, exploratory data analysis, data visualization, numeric summary measures, the normal distribution, sampling distributions, confidence intervals, and hypothesis testing. The emphasis of the course is on statistical thinking rather than computation. Statistical software is used.
 
   STAT-155
   LAS Perspective 7B: Biostatistics
 
BIOL-321
Genetics
Introduction to the principles of inheritance; the study of genes and chromosomes at molecular, cellular, organismal, and population levels.
3
CHMO-232
Organic Chemistry II
This course is a continuation of the study of the structure, nomenclature, reactions and synthesis of the following functional groups: aromatic systems, alcohols, ethers, epoxides, and carbonyls. This course will introduce the use of mechanisms in describing and predicting organic reactions.
3
CHMO-236
Organic Chemistry II Lab
This course teaches students to apply basic lab techniques to organic synthetic experiments reactions covered in the accompanying lecture COS-CHMO-232. This course will also help students to solidify the concepts taught in lecture. The course will continue to instruct students in maintaining a professional lab notebook.
 
Biotechnology and Molecular Bioscience Elective (WI)
4
 
LAS Perspective 2 (artistic)
3
 
LAS Perspective 3 (global)
3
Third Year
BIOL-204
Microbiology 
This course is an introduction to microorganisms and their importance. Principles of structure and function, metabolic diversity, taxonomy, environmental microbiology, bioremediation, and infectious diseases of bacteria are discussed. Basic laboratory techniques covered include: microscopy; staining, culturing, isolation, and identification of bacteria; isolation and identification of normal flora; identification of unknown bacteria; antibiotic resistance; metabolic tests; clinical and commercial testing protocols; and detection and counting of bacteria in environmental samples (foods, water, soils).
4
CHMB-402
Biochemistry I
This course introduces the structure and function of biological macromolecules and their metabolic pathways. The relationship between the three-dimensional structure of proteins and their function in enzymatic catalysis will be examined. Membrane structure and the physical laws that apply to metabolic processes will also be discussed.
3
BIOL-325
Bioinformatics Analysis Macromolecule
This course addresses the fundamental concepts of bioinformatics, especially in regards to computational analysis of nucleic acids and proteins. The nature and extent of information available in bioinformatic databases will be presented. Discussion and utilization of computational programs for analysis of individual and multiple sequences for functional and evolutionary information will be discussed. The computational laboratory will highlight the multitude of web-based applications available for analysis of molecular sequences.
3
 
Biotechnology and Molecular Bioscience Electives
13
 
LAS Perspective 4
3
 
Open Elective
3
 
LAS Immersion 1
3
Fourth Year
BIOL-500
Experiential Learning Requirement in the Life Sciences
The experiential learning (EL) requirement may be fulfilled through a variety of methods including co-op, undergraduate research, summer research experiences, study abroad relevant to the major, designated EL courses, etc. All experiences must be approved by the GSOLS EL Committee.
0
 
Biotechnology and Molecular Bioscience Electives
20
 
LAS Immersion 2, 3
6
 
Open Elective
3
 
LAS Elective
3
Total Semester Credit Hours
121

Please see General Education Curriculum–Liberal Arts and Sciences (LAS) for more information.

One Writing Intensive (WI) elective must be selected to satisfy degree requirements. Please see adviser for a list of eligible courses.

(WI) Refers to a writing intensive course within the major.

* Please see Wellness Education Requirement for more information. Students completing bachelor's degrees are required to complete two different Wellness courses.

Molecular bioscience and biotechnology electives

Course
BIOL-265
Evolutionary Biology (WI)
This course investigates the historical framework of evolutionary biology and the meaning/nature of evidence pertinent to biological evolution. Topics will include: earth history, the evolution of proteins and the genetic code, molecular evolution, neutral theory vs. selection, genetic variation, natural selection, migration, mutation, genetic drift, fitness, population dynamics and genetics, speciation, systematics and classification systems, molecular phylogenetics, the evolution of eukaryotic organisms, behavioral evolution, historical biogeography, and human evolution and variation.
BIOL-303
Cell Physiology
This course is a study of functional eukaryotic cellular physiology with an emphasis on the role of global gene expression in cellular function and disease. Nuclear and cytoplasmic regulation of macromolecular synthesis, regulation of cellular metabolism, control of cell growth, and the changes in cell physiology in disease are covered. This course also covers the technology used for studying changes in gene expression associated with cell differentiation and disease. The associated laboratory covers microarray techniques. This includes design and implementation of an experiment to acquire gene expression data, analyzing the acquired data using simple computer programs, such as MAGIC, and writing a research paper explaining findings.
BIOL-305
Plants, Medicine and Technology
Plants have played a significant role in the shaping of our world. This course will explore the utilization of plants for foods, fuels, materials, medicine, novel genetic information, and social aspects of different cultures. All cultures depend on about fifteen plant species, most of which have been changed by plant improvement methods to enhance human benefits. This course will explore these changes in important crops, plant constituents used in medicine, and the technology used to produce important plant-produced medicines.
BIOL-306
Food Microbiology
This course presents the microbiology of foods. Topics include microbial food spoilage, foodborne pathogens, food preservation techniques, and environmental parameters found in foods important in the survival of food spoilage microbes and foodborne pathogens. The lab will include exercises on isolating heterotrophs from all kinds of food, isolation of fungi from various foods, and the survival of various pathogens in food and beverages.
BIOL-307
Microbiology of Wastewater
This is an advanced course in the microbiology of wastewater treatment, solids treatment, and the generation and maintenance of drinking water. Topics include activated sludge processes, clarification processes, disinfection processes, trickling filters, rotating biological contactors, waste stabilization ponds, sludge microbiology, anaerobic digestion of biosolids, microbial aspects of drinking water and drinking water distribution systems, and public health aspects of wastewater and biosolids disposal on land and in marine systems.
BIOL-308
Biology of Cancer (WI)
This course will address the fundamental concepts of the molecular and cellular biology of cancer cells. Class discussions, reading and writing assignments will explore the function of tumor suppressor genes, oncogenes, growth factors, and signal transduction pathways in the context of cancer cell growth, organization, and communication. Students in this course will gain an understanding of the molecular mechanisms involved in the process of tumorigenesis, will become aware of landmark findings, current research, and practice how to communicate effectively through scientific writing. This is a designated writing intensive course.
BIOL-310
Bioenergy: Microbial Product
This course presents how microbial processes are used to produce various biofuels from renewable feedstocks. The topics presented include bioethanol production, biobutanol production, methane (biogas) production, biodiesel production, and the economics involved with the production of alternative fuels.
BIOL-312
Human Genetics
BIOL-314
Tissue Culture
This course will present the techniques and applications of culturing eukaryotic cells, tissues, and organs in vitro. Emphasis will be placed on mammalian systems. Lectures will cover the historical background of tissue culture, how to authenticate cell lines, basic cell culture techniques; as well as stem cells, tissue engineering, and the role of cell culture in regenerative medicine. In the laboratory, students will be introduced to growth curves, cloning techniques, primary cell culture, and making a cell line; as well as detecting mycoplasma and other cell culture contaminants.
BIOL-322
Developmental Biology
This course is a study of the processes of growth, differentiation and development that lead to the mature form of an organism. The course will also address how developmental biology is integrated with other aspects of biology including disease, ecology, and evolution.
BIOL-330
Bioinformatics
Bioinformatics introduces students to the analysis of biological sequences: DNA, mRNA, and protein. Emphasis is placed on classical bioinformatics analyses such as gene prediction, sequence alignment, and phylogenetics. The methods are applicable to both human and model organism studies in medical, biotechnological, and classical biology research.
BIOL-335
Phage Biology
Viruses that infect bacteria (phages) are ubiquitous wherever their hosts reside– whether in soil, a hot spring or our own digestive tract. Phages are also the most abundant and diverse biological entities, consequently phage research is relevant to health, industry, agriculture, ecology and evolution. Phage Biology is a research-intensive course designed to explore the fundamental properties of phages, how they interact with their bacterial hosts, the major techniques used to characterize them and their applications. Since phage particles are comprised of DNA and protein the techniques employed in this course have relevance to many other biological disciplines. This course will develop both laboratory and analytical skills as students will isolate and characterize mutant phages in a novel model system, becoming mutation sleuths to determine mutation locations and their effect.
BIOL-340
Genomics
This course introduces students to the analysis of complex genomes. Emphasis is placed on genetic information derived from the human genome project but advances with genomes of other model systems will be discussed. Lectures cover scientific techniques used to map and sequence the human genome, as well as strategies for identification of disease susceptibility genes. The laboratory utilizes an automated DNA sequencer to demonstrate the acquisition of genetic sequences. Laboratory sessions emphasize cycle sequencing of cloned DNA fragments using an automated fluorescent DNA sequencer.
BIOL-341
Synthetic Biology
The goal of the emerging field of synthetic biology is to design and construct novel biological systems that are useful. Synthetic biology examines the whole system of genes and gene products, their regulation, co-regulation and the interactions among their products, not individual genes. This course will cover organisms with known and characterized processes that are used to add or modify biological functions. Students will become proficient in the understanding of synthetic biology concepts and will master basic laboratory techniques utilized in synthetic biology.
BIOL-345
Molecular Ecology (WI)
This course explores the biology of populations and communities of organisms using molecular data. As DNA, RNA and proteins are nearly universal between organisms, the principles taught in this course will have wide applications, both within ecology and throughout many sub-disciplines of biology. Furthermore, this course will prepare students to apply the techniques in numerous research fields. The primary literature and worldwide applications of the field of molecular ecology will be incorporated into the course.
BIOL-350
Computational Genomics
BIOL-365
Population Genetics
This course consists of a study of DNA, genes, inheritance, genetic variation, genetic architecture, and change within and among populations. Fundamental genetics topics include DNA, gene, and chromosomal structure and function along with, transmission genetics, Mendelian inheritance patterns, sex-linked inheritance, genetic linkage, and the Hardy-Weinberg Principle. Population based topics will include genetic variation, its importance, how it originates and is maintained as well as inbreeding, random mating, mutation, migration, selection, genetic drift, the effects of small population size, fitness, population subdivision, the shifting balance theory, inter-deme selection, kin selection, neutral theory, molecular evolution, molecular clocks, multi-gene families, gene conversion, artificial selection, the genetic basis of quantitative traits and the fundamental theorem of natural selection.
BIOL-370
Environmental Microbiology
This course presents the microbiology of soils, freshwater, marine environments, and extreme environments. Topics include nutrient cycling in soils by microorganisms, the diversity of microorganisms in soils, the role of microorganisms in freshwater environments such as lakes, rivers, and wetlands and marine environments such as the open ocean, coastline environments, and salt marshes, and the diversity of microorganisms in extreme environments including highly acidic, highly alkaline, and highly saline environments. Laboratory experiments will explore the types of bacteria in different types of soils in Western New York, types of bacteria in different freshwater environments in Western NY, determining total and fecal coliform counts in freshwaters, determining the presence of antibiotic resistant coliforms in sediment samples, and examining the survival of various human pathogens in surface waters.
BIOL-375
Advanced Immunology
This course is an in-depth treatment of the molecular and cellular events associated with innate and adaptive immune responses. The response of the host to the environment of microbes and pathogens will be emphasized. Recognition and response of the host to the infectious agents and the resolution of the disease state will be examined at the cellular and molecular levels. The immune response to tumors will be treated and medical advances in treating neoplastic disease using immunological therapy will be presented. The laboratories will focus on the cellular and molecular techniques employed in the modern immunology laboratory. A laboratory module employing hybridoma techniques will provide an intensive experience with monoclonal antibodies and their use in diagnostics and disease treatment.
BIOL-377
Directed Research in Developmental Biology
In this lab-based course, students perform original research on the cellular and molecular mechanisms of development. Students use classical embryological, bioinformatics, molecular biology, and/or microscopy techniques, depending on the project. Students read and discuss primary scientific literature in a lab meeting setting, write a research paper and present their research findings in a talk or poster. Lab meets in two three-hour blocks; students are also expected to work independently for an additional three hours per week.
BIOL-380
Bioremediation
This course is an introduction to bioremediation focusing on the interactions between engineers, chemists, hydrologists, and microbiologists to develop, design, and implement strategies to remediate contaminated soils or water. Topics include microorganisms involved in bioremediation, types of chemical pollutants, economics of remediation, environmental factors important in bioremediation, in situ processes, and ex situ processes. The laboratory project involves the isolation of hydrocarbon degrading bacteria from soils and sediments and further characterization of the hydrocarbon degrading isolates with respect to types of hydrocarbons degraded and rate of degradation.
BIOL-401
Bioseparations: Principles and Practices
This is a laboratory-based course that teaches classic concepts and techniques to enable the use of these techniques to purify small molecules and macromolecules from whole organisms. Detection techniques will include the use of bacterial biosensors, coomassie-blue staining, silver staining, and immunoblot analysis. Separation techniques will include SDS Polyacrylamide gel electrophoresis (PAGE) analysis, thin layer chromatography, and paper electrophoresis. Purification techniques will include ammonium sulfate precipitation, affinity chromatography, and thin layer chromatography.
BIOL-403
Fundamentals of Plant Biochemistry and Pathology
This course is primarily focused on biochemical and pathological aspects of a plant's life. This course provides an understanding of why protein catalysts are important in the field of plant biochemistry and plant pathology. More specifically, the role enzymes play in the basic cellular processes of plant growth and development is presented. Topics related to plant pathology are presented; such as plant disease epidemics, plant diagnosis, plant diseases caused by fungi, bacteria, nematodes, viruses, and plant-pathogen interaction, at the ecological, physiological and genetic level.
BIOL-415
Virology
This course is an introduction to virology with specific emphasis on the molecular mechanisms of virus infection of eukaryotic cells and virus-cell interactions. Virus structure, genetics, the infectious cycle, replication strategies, pathogenesis, persistence, effects on host macromolecular synthesis, viral oncogenesis, viral vectors, emerging viral diseases, and strategies to protect against and combat viral infection will be discussed.
BIOL-416
Plant Biotechnology
In this course aspects of plant biotechnology will be investigated. Areas of concentration will include: tissue culture, genetic transformation of plant cells, regeneration of transgenic plants, and the construction and characterization of transgenic plants for food production, experimental biology investigations, and novel product(development. The laboratory will provide experiences to complement(the lecture information in plant cell culture and experiences in the use of Agrobacterium as the gene shuttle to introduce novel genetic information into plants.
BIOL-418
Plant Molecular Biology
The course will introduce molecular biology concepts and encourage the application of these concepts to the particular plant gene being studied. This upper-level elective course has a strong laboratory element. Small groups will study different plant genes during the semester. The laboratory element will be a self-paced group project to amplify, clone, sequence, and examine the expression profiles of plant genes. Gene databases such as TAIR and NCBI, as well as sequence analysis software, will be used throughout the course. The groups will be guided to make week-by-week project plans, to troubleshoot problems, and record results in laboratory notebooks. In addition, weekly results and progress will be shared via an interactive wiki.
BIOL-420
Microbe-Host Interactions
This course focuses on the bacterial and host (human, insect, plant, animals and fungi) mechanisms used in interactions with hosts during both pathogenesis and symbiosis. We will explore molecular, microbiome and genomic levels, drawing on the disciplines of genomics, biochemistry, molecular biology and cell biology. Several of the agonistic and antagonistic interactions will illustrate broader principles and contribute to our fundamental understanding of biological processes. The results of these interactions have a strong impact on biological productivity, and so are also ever increasing important in human health. An emphasis will be on the roles of molecules and cell structures in determining the outcome of an interaction. Course is intended to allow students to develop knowledge of host-bacterial interactions at the molecular to organismal level, with an emphasis on several model symbiotic- and patho-systems. Knowledge about bacterial mechanisms use to associate with host organisms and the different strategies bacteria employ to gain entry, damage host tissue and obtain nutrients for growth will be explored. We will also illustrate several mutualistic relationships between eukaryotic hosts with partner symbiotic bacteria. Genomic approaches to describe microbiomes (microbial communities) on host organisms and in environments will also be explored.
BIOL-425
Ethics in Bioinformatics (WI)
This course focuses on individual and organizational responsibilities in bioinformatics research, product development, product commercialization and clinical and consumer genetic testing.
BIOL-427
Micro and Viral Genetics
This course will examine bacterial and viral genetic systems. These systems will be studied with the idea that they are simple examples of the genetics systems found in higher organisms, and can also be used as biotechnological tools. This course will show how these prokaryotic systems have served as excellent model systems for studying the genetics of higher organisms. This course will examine how these systems can be genetically manipulated using transformation, transduction, transposition, and conjugation. Bacteria and viruses will be discussed as important tools for many of the greatest discoveries in biology; especially in molecular biology and genetics. In addition some of the primary research journal articles will be critiqued.
BIOL-428
Eukaryotic Gene Regulation
This course presents an overview of gene expression in eukaryotic systems, with an emphasis on how disease can result when gene regulation is disrupted. Points of control that are examined include: chromatin structure, transcription initiation, transcript processing, stability and modification, RNA transport, translation initiation, post-translational events, and protein stability. The mechanisms involved in regulating these control points are discussed by exploring specific well studied cases. The significance of these processes is highlighted by a discussion of several diseases that have been shown to be due to defects in gene regulation.
BIOL-430
Bioinformatics Algorithms
BIOL-440
Advanced Applied Genomics
BIOL-450
Genetic Engineering (WI)
This course is a laboratory-intensive introduction to the theoretical basis, laboratory techniques, and applications of gene manipulation.
BIOL-495
Advanced Biology Research
This course is a faculty-directed student project or research involving laboratory or field work, computer modeling, or theoretical calculations that could be considered of an original nature. The level of study is appropriate for students in their final two years of study.
BIOL-498
Advanced Independent Study
This course is a faculty-directed tutorial of appropriate topics that are not part of the formal curriculum. The level of study is appropriate for student in their final two years of study.
BIOL-599
Research Based Writing (WI)
This course is intended for students with significant research experience to work closely with their faculty mentors to prepare a manuscript for publication or write a proposal for external funding. Students will devote significant time to writing, revision and peer review. A submission-quality manuscript or proposal is expected at the end of the semester.
BIOL-601
Genetic Disease and Disorders
The identification of genetic causes of disease has been one of the major modern scientific breakthroughs. This course examines a range of inherited diseases, how causative genetic variations were or are being identified, and what this means for the treatment of the diseases. Scientific literature will be utilized, both current and historical.
BIOL-700
Cell Molecular Genetics
CHMA-222
Chemical Separations
CHMB-450
Biochemistry of Infectious Diseases
MEDS-313
Introduction to Infectious Diseases
This is an advanced course in the mechanisms by which bacteria and fungi cause disease in humans. The course topics include the clinical signs of each disease, diagnosis of each disease, pathogenic mechanisms used by the organisms to cause disease, treatment of the disease, and prevention of the disease. The laboratory component of this course will consist of a mixture of methodologies used in the identification of the infectious agents, evaluation of the host response to the infection, case studies, student presentations of articles related to infectious disease and other assignments aimed at deepening the understanding the infectious disease process.
MEDS-530
Human Immunology
Introduction to the fundamental facts and concepts on immunology to include: innate and adaptive immunity; cells, molecules, tissues and organs of the immune "system"; cell communication and interaction; antibody structure and function; and the application of these concepts to infectious diseases, vaccine design, autoimmune diseases, cancer, transplantation, regulation of the immune response, allergic reactions and immunosuppression. Students will gain an understanding of immunological principles and techniques, and their application to contemporary research, with results from instructor’s research laboratory
BIOL-594
Molecular Modeling and Proteomics
This course will explore two facets of protein molecules: separation and structure. The separation component will address common protein separation techniques such as 2D gel electrophoresis and chromatography. The structure component will follow the levels of protein structures, focusing on both experimental and computational methods to determine protein structures. Methods for determining primary structures such as Edman degradation method, Sanger method and mass spectrometry will be taught in lectures. Algorithms of predicting secondary structures will be introduced and implemented. Tertiary structure determination techniques such as NMR will be covered, with an emphasis on proton NMR, 13C NMR and multi-dimensional NMR. Homology modeling will be used to predict protein tertiary structures.

Faculty

Michael Savka - massbi

RIT Username
massbi
Email
massbi@rit.edu
Courses Taught This Semester
2195-BIOL-450-01;2185-BIOL-495-20;2185-BIOL-798-20;2185-BIOL-498-20;2185-BIOL-301-20;2185-BIOL-298-20;2195-BIOL-450-01;2195-BIOL-450-01;2185-BIOL-450-01;2195-BIOL-450-01;2191-BIOL-495-20;2191-BIOL-495-20;2191-BIOL-301-20;2185-BIOL-450-01;2181-BIOL-305-01;2181-BIOL-798-20;2181-BIOL-498-20;2181-BIOL-495-20;2181-BIOL-295-20;2181-BIOL-298-20;2181-BIOL-301-20;2181-BIOL-295-20;2181-BIOL-298-20;2181-BIOL-301-20;2181-BIOL-495-20;2181-BIOL-498-20;2181-BIOL-798-20;2181-BIOL-305-01;2185-BIOL-450-01;2185-BIOL-450-01;2185-BIOL-298-20;2185-BIOL-301-20;2185-BIOL-498-20;2185-BIOL-798-20;2185-BIOL-495-20;2191-BIOL-798-20;2191-BIOL-798-20;2191-BIOL-498-20;2191-BIOL-498-20;2191-BIOL-401-01;2191-BIOL-401-01;2191-BIOL-401-01;2191-BIOL-401-01;2191-BIOL-295-20;2191-BIOL-295-20;2191-BIOL-298-20;2191-BIOL-298-20;2191-BIOL-301-20;
Additional colleges/divisions
Scholarly Publications
Journal Paper
MA., Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka. "Whole Genome Sequencing and Analysis Reveal Insights into the Genetic Structure, Diversity and Evolutionary Relatedness of LuxI and luxR Homologs in Bacteria Belonging to the Sphingomonadaceae Family." Front Cell Infect Microbiol. Jan 8. 4:188 (2015): 1-14. Web.
Gan, HY, et al. "Whole-Genome Sequences of Five Oligotrophic Bacteria Isolated from Deep within Lechuguilla Cave, New Mexico." Genome Announcements 2. 6 (2014): 1-2. Web.
Triassi, AJ, et al. "L,L-diaminopimelate Aminotransferase (DapL): A Putative Target for the Development of Narrow-spectrum Antibacterial Compounds." Frontiers in Microbiology 5. 509 (2014): 1-10. Web.
Gan, HM, et al. "High-Quality Draft Whole-Genome Sequences of Three Strains of Enterobacter Isolated from Jamaican Dioscorea cayenensis (Yellow Yam)." Genome Announcements 2. 2 (2014): 1-2. Web.
Gan, HY, et al. "Whole-genome Sequences of 13 Endophytic Bacteria Isolated From Shrub Willow (Salix) Grown in Geneva, New York." Genome Announc. 2. 3 (2014): 1-2. Web.
Gan, Han Ming, et al. "Comparative Genomic Analysis of Six Bacteria Belonging to the Genus Novosphingobium: Insights into Marine Adaptation, Cell-cell Signaling and Bioremediation." BMC Genomics 14. 431-445 (2013): 431-445. Web.
McCroty, Sean E, et al. "Biochemical Characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl:meso-2,6-diaminopimelate ligase (MurE) from Verrucomicrobium spinosum." PLOSone 8. 6 (2013): e66458. Web.
Gan, HM, et al. "Genome Sequence of Methylobacterium Sp. Strain GXF4, a Xylem Associated Bacterium Isolated from Vitis Vinifera L. Grapevine." Journal of Bacteriology 194. (2012): 5157-5158. Print.
Gan, HM, et al. "Whole Genome Sequence of Enterobacter Sp. SST3: An Endophyte Isolated from Jamaica Sugarcane (Saccharum Sp.) Stalk Tissue." Journal of Bacteriology 194. (2012): 5981-5982. Print.
Gan, HM, et al. "Genome Sequence of Novosphingobium Sp. Strain Rr 2-17, A Nopaline Crown Gall Associated Bacterium Isolated from Vitis Vinifera L. Grapevine." Journal of Bacteriology 194. (2012): 5137-5138. Print.
Bulman, Zack, et al. "A Novel Property of Propolis (bee glue): Anti-pathogenic Activity by Inhibition of N-acyl-homoserine Lactone Mediated Signaling in Bacteria." Journal of Ethnopharmacology 138. (2011): 788-797. Print.
Book Chapter
Savka, Michael A, et al. "Biased Rhizosphere? Concept and Advances in the Omics Era to Study Bacterial Competitiveness and Persistence in the Phytosphere." Molecular Microbial Ecology of the Rhizosphere. Hoboken, NJ: John Wiley & Sons, Inc., 2013. 1147-1161. Print.
Savka, Michael A., et al. "Grapevine Pathogens Spreading with Sropagating Plant stock: Detection and Methods for Elimination." Grapevines: Varieties, Cultivation. Ed. P.V. Szabo and J. Shojania. New York: Nova Science Publishers, 2011. 1-88. Print.
Published Review
Savka, Michael A. and Andre O Hudson. "Bioluminescence." Rev. of Bioluminescence Biosensor Strains for the Detection of Quorum-sensing N-acyl-homoserine Lactone Signal Molecules., ed. DJ Rodgerson. Nova Scientific Publishers 2011: 49-70. Print.
Published Conference Proceedings
Bulman, Zack, Andre O. Hudson, and Michael A. Savka. "Propolis, a Product of the Bee Hive, has an Antagonistic Affect on Quorum-sensing Regulated Bioluminescence, Gene Transcription and Motility." Proceedings of the American Society for Biochemistry & Molecular Biology Meeting. Ed. K. Cornely, P. Ortiz, and M.A. Wallert. Washington, DC: American Society for Biochemistry & Molecular Biology, 2011. Print.
Subki, Mior MM Ahmad, et al. "Isolation and Identification of Methylobacterium sp. From Grapevine Xylem Fluids and Mutants Deficient in Acyl-homoserine Signal Production, Abstract 818." Proceedings of the American Society for Microbiology, 111th General Meeting. Ed. American Society for Microbiology. New Orleans, LA: American Society for Microbiology, 2011. Print.
Aziz, Nazrin A. and Michael A. Savka. "Screening of Transposon Mutants of Sphingobium sp. KK22 Altered in Quorum-sensing Signal Synthesis." Proceedings of the Rochester Academy of Sciences, Fall 2011 Scientific Paper Day. Ed. Monroe Community College. Rochester, NY: Rochester Academy of Sciences, 2011. Print.
Sorensen, Ryan and Michael A. Savka. "Disruption of Bacterial Signaling by Beehive Plant Resins." Proceedings of the Rochester Academy of Sciences, Fall 2011 Scientific Paper Day. Ed. Monroe Community College. Rochester, NY: Rochester Academy of Sciences, 2011. Print.
First Name
Michael
Middle Name
A
Last Name
Savka
Phone
585-475-5141
Rank
College/Division & Department
Job Title
Instructional Faculty
Professional Roles
College of Science:Instructional Faculty

Dina Newman - dlwsbi

RIT Username
dlwsbi
Email
dlwsbi@rit.edu
Courses Taught This Semester
2185-BIOL-495-16;2185-BIOL-798-16;2185-BIOL-321-01;2185-BIOL-321-01;2195-BIOL-321-01;2185-BIOL-498-16;2195-BIOL-321-01;2195-BIOL-321-01;2185-BIOL-301-16;2185-BIOL-599-02;2185-BIOL-298-16;2185-BIOL-295-02;2195-BIOL-321-01;2195-BIOL-599-02;2195-BIOL-599-02;2191-BIOL-798-16;2185-BIOL-321-01;2181-BIOL-412-01;2181-BIOL-798-16;2181-BIOL-498-16;2181-BIOL-599-01;2181-BIOL-495-16;2181-BIOL-301-16;2181-BIOL-121-03;2181-BIOL-295-16;2181-BIOL-298-16;2181-BIOL-121-03;2181-BIOL-295-16;2181-BIOL-298-16;2181-BIOL-301-16;2181-BIOL-495-16;2181-BIOL-599-01;2181-BIOL-498-16;2181-BIOL-798-16;2181-BIOL-412-01;2185-BIOL-321-01;2185-BIOL-295-02;2185-BIOL-298-16;2185-BIOL-599-02;2185-BIOL-301-16;2185-BIOL-498-16;2185-BIOL-321-01;2185-BIOL-321-01;2185-BIOL-798-16;2185-BIOL-495-16;2191-BIOL-412-01;2191-BIOL-412-01;2191-BIOL-121-03;2191-BIOL-121-03;2191-BIOL-599-01;2191-BIOL-599-01;2191-BIOL-295-16;2191-BIOL-295-16;2191-BIOL-298-16;2191-BIOL-298-16;2191-BIOL-301-16;2191-BIOL-301-16;2191-BIOL-495-16;2191-BIOL-495-16;2191-BIOL-498-16;2191-BIOL-498-16;2191-BIOL-798-16;
Additional colleges/divisions
Scholarly Publications
Journal Paper
Wright, L. Kate, et al. "Arrows in Biology: Lack of Clarity and Consistency Points to Confusion for Learners." CBE - Life Sciences Education 17. 1 (2018): ar6, 1-13. Web.
Newman, Dina L., et al. "A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines." CBE - Life Sciences Education 17. 2 (2018): es2, 1-10. Web.
Newman, Dina L., et al. "Physical Models Can Provide Superior Learning Opportunities Beyond the Benefits of Active Engagement." Biochemistry and Molecular Biology Education 46. 5 (2018): 435-444. Print.
Donahue, Callie J., et al. "A Close-up Look at PCR." CourseSource. (2018): in press. Web.
Newman, Dina L., et al. "Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool." CBE - Life Sciences Education 15. 2 (2016): ar9. Web.
Wright, L. Kate, et al. "Web-based Interactive Video Vignettes Create a Personalized Active Learning Classroom for Introducing Big Ideas in Introductory Biology." Bioscene 42. 2 (2016): 32-43. Print.
Wright, Kate L., J. Nick Fisk, and Dina L. Newman. "DNA → RNA: What Do Students Think the Arrow Means?" CBE-Life Sciences Education 13. 2 (2014): 338-348. Print.
Wright, L. Kate and Dina L. Newman. "A PCR-based Laboratory Exercise that Increases Student Understanding of Central Dogma Concepts." Journal of Microbiology and Biology Education 14. 1 (2013): 93-100. Print.
Wright, L. Kate, et al. "Online Reading Informs Classroom Instruction and Promotes Collaborative Learning." Journal of College Science Teaching 43. 2 (2013): 44-53. Print.
Newman, Dina L., Christina M. Catavero, and L. Kate Wright. "Students Fail to Transfer Knowledge of Chromosome Structure to Topics Pertaining to Cell Division." CBE-Life Sciences Education 11. Winter (2012): 1-12. Print.
Wright, L.K. and D.L. Newman. "Interactive Modeling Lesson Increases Student Understanding of Ploidy During Meiosis." Biochemistry and Molecular Biology Education 39. 5 (2011): 344-351. Print.
Peer Reviewed/Juried Poster Presentation
Magelhaes, Rita Margarida Quinones de, et al. "Inclusive Excellence: A Three-Pronged Approach to Increasing Diversity and Retention in Science." Proceedings of the Society for the Advancement of Biology Education Research, July27-29, 2018, Minneapolis, MN. Ed. Mary Pat Wenderoth. Minneapolis, MN: n.p..
Dy, Grace Elizabeth C., L. Kate Wright, and Dina L. Newman. "Visual Representations of Meiosis in Biology Textbooks Fail to Provide Important Conceptual Information." Proceedings of the Society for the Advancement of Biology Education Research, July27-29, 2018, Minneapolis, MN. Ed. Mary Pat Wenderoth. Minneapolis, MN: n.p..
Newman, Dina L., et al. "How is Meiosis Taught in High School?" Proceedings of the American Society of Human Genetics Annual Meeting, October 16-20, 2018, San Diego, CA. Ed. Bruce R. Korf. San Diego, CA: n.p..
Newman, Dina L., et al. "Fostering Inclusivity and Equity: a Three-Strand Approach for Research, Classroom and Community." Proceedings of the 2018 Transforming STEM Higher Education Conference. Ed. Kelly Mack. Atlanta, GA: AAC&U.
Invited Keynote/Presentation
Wright, L. Kate and Dina L. Newman. "High School Teacher Conceptions and Lessons about Meiosis Reveal a Critical gap in Molecular level Knowledge." Society for the Advancement of Biology Education Research Annual Meeting. Society for the Advancemen tof Education Research. Minneapolis, MN. 29 Jul. 2018. Conference Presentation.
Gardner, Stephanie, et al. "Development and Testing of Competencies for Experimentation in Biology." Society for the Advancement of Biology Education Research Annual Meeting. Society for the Advancemen tof Education Research. Minneapolis, MN. 29 Jul. 2018. Conference Presentation.
Newman, Dina L. and L. Kate Wright. "How to Get More Out of Conceptual Assessment Data." Society for the Advancement of Biology Education Research Annual Meeting. Society for the Advancemen tof Education Research. Minneapolis, MN. 29 Jul. 2018. Conference Presentation.
Newman, Dina L., et al. "Gauging the Impact of Organic Chemistry REActivities at a Four-Year and a Two-Year Institution." Biennial Conference on Chemical Education. American Chemical Society. South Bend, IN. 2 Aug. 2018. Conference Presentation.
Newman, Dina L., et al. "Undergraduate Faculty Genetics Education Workshop." American Society of Human Genetics Annual Meeting. American Society of Human Genetics. San Diego, CA. 17 Oct. 2018. Conference Presentation.
Collison, Christina Goudreau, et al. "Reformed Experimental Activities (REActivities): Rethinking How We Deliver an Organic Chemistry Lab." Biennial Conference on Chemical Education. American Chemical Society. South Bend, IN. 30 Jul. 2018. Conference Presentation.
Gardner, Stephanie, et al. "Development and Testing of Assessments for Measuring Experimentation Competence in Biology." Society for the Advancement of Biology Education Research Annual Meeting. Society for the Advancemen tof Education Research. Minneapolis, MN. 27 Jul. 2018. Conference Presentation.
Cardenas, Jordan J., et al. "Arrows in Biology Drawings: Missing the Point of the Figure." 6th Annual Meeting. Society for the Advancement of Biology Education Research. Minneapolis, MN. 16 Jul. 2016. Conference Presentation.
Wright, L. Kate and Dina L. Newman. "Development of a New Theoretical Framework and its Application to Learning Meiosis." 6th Annual Meeting. Society for the Advancement of Biology Education Research. Minneapolis, MN. 16 Jul. 2016. Conference Presentation.
Cardinale, Jean, et al. "The Effectiveness of Interactive Video Vignettes to Address Introductory Studentsï¾’ Common Biological Misconceptions and Promote Learning of Core Biology Concepts." Envisioning the Future of STEM Undergraduate Education. National Science Foundation. Washington, DC. 27 Apr. 2016. Conference Presentation.
Newman, Dina L., et al. "Interactive Video Vignettes: A Tool for Teaching and Insight into Student Thinking." Envisioning the Future of STEM Undergraduate Education. National Science Foundation. Waxhington, DC. 27 Apr. 2016. Conference Presentation.
DeOca, Kayla, et al. "DNA Sequence is the Key to Understanding Meiosis." National Conference on Undergraduate Research, 30th Annual Meeting. Council on Undergraduate Research. Asheville, NC. 7 Apr. 2016. Conference Presentation.
Newman, Dina L. and Ricki Lewis. "Teaching Foundational Concepts in Genetics Through Primary Literature." Undergraduate Faculty Genetics Education Workshop. American Society of Human Genetics. Baltimore, MD. 6 Oct. 2015. Lecture.
Cardenas, Jordan, et al. "Arrows, Arrows, Everywhere in Biology Drawings." Fall Paper Session. Rochester Academy of Science. Canandaigua, NY. 7 Nov. 2015. Conference Presentation.
Jasmi, Jasrina Mohd, et al. "Evidence of Student Learning with Interactive Video Vignettes in Biology." Fall Paper Session. Rochester Academy of Science. Canandaigua, NY. 7 Nov. 2015. Conference Presentation.
Fisk, J. Nick, et al. "Analysis of Results from the Central Dogma Concept Inventory." Fall Paper Session. Rochester Academy of Science. Canandaigua, NY. 7 Nov. 2015. Conference Presentation.
Newman, Dina L., et al. "Teaching Meiosis Brings Together Concepts from Four Different Areas." 65th Annual Meeting. American Society of Human Genetics. Baltimore, NY. 9 Oct. 2015. Conference Presentation.
Stark, Louisa, Dina L. Newman, and Joseph Devaney. "Ethical Decision Making Frameworks in the Classroom." Undergraduate Faculty Genetics Education Workshop. American Society of Human Genetics. San Diego, CA. 25 Oct. 2014. Conference Presentation.
Newman, Dina L. and Adam Hott. "What is a Gene?" Undergraduate Faculty Genetics Education Workshop. American Society of Human Genetics. Boston, MA. 22 Oct. 2013. Lecture.
Zimmer, Erin, Bethany Bowling, and Dina L. Newman. "Linking Basic Concepts to Whole Exome Sequencing Content." Undergraduate Faculty Genetics Education Workshop. American Society of Human Genetics. San Francisco, CA. 6 Nov. 2012. Conference Presentation.
Newman, Dina L. "Assessing Course Curricula." PKAL Upstate NY Regional Network Meeting. Project Kaleidoscope. Rochester, NY. 20 Jan. 2012. Conference Presentation.
Newman, Dina L. and Ricki Lewis. "How NOT to Write Multiple Choice Questions." Undergraduate Faculty Genetics Education Workshop. American Society of Human Genetics. Palais Des Congres De Montreal, Montreal, Canada. 11 Oct. 2011. Lecture.
Newman, Dina L. "Do your Students Really Know What a Chromosome is?" Undergraduate Faculty Genetics Education Workshop. American Society of Human Genetics. Palais Des Congres De Montreal, Montreal, Canada. 11 Oct. 2011. Lecture.
Published Conference Proceedings
Newman, Dina L., et al. "Lessons Learned from the First Year Implementation of a Two-Track, Reformed Introductory Biology Course." Proceedings of the National Association of Biology Teachers Research Symposium. Ed. Teddie Phillipson-Mower. Atlanta, GA: The National Association of Biology Teachers, 2013. Web.
Shows/Exhibits/Installations
Newman, Dina L. CSI Debunked: The Truth about Fingerprints. By Jeffrey Nick Fisk, et al. 4 May 2013. Imagine RIT, Rochester, NY. Exhibit.
Newman, Dina. What is in Your Genes? By Carolina Alexander Rodriguez, et al. 5 May 2012. Imagine RIT, Rochester, NY. Exhibit.
Newman, Dina L. Is It In Your Genes? By Dina L. Newman, et al. 5 May 2011. Imagine RIT, Rochester, NY. Exhibit.
First Name
Dina
Middle Name
L
Last Name
Newman
Phone
585-475-4482
College/Division & Department
Job Title
Instructional Faculty
Professional Roles
Co-Director of MBER
College of Science:Instructional Faculty

Julie Thomas - jatsbi

RIT Username
jatsbi
Email
jatsbi@rit.edu
Courses Taught This Semester
2185-BIOL-495-28;2185-BIOL-298-27;2185-BIOL-798-28;2185-BIOL-335-01;2195-BIOL-335-01;2185-BIOL-335-01;2195-BIOL-335-01;2195-BIOL-335-01;2195-BIOL-335-01;2191-BIOL-798-28;2191-BIOL-798-28;2191-BIOL-495-28;2185-BIOL-301-27;2181-BIOL-798-28;2181-BIOL-427-01;2181-BIOL-427-01;2181-BIOL-298-27;2181-BIOL-301-27;2181-BIOL-295-27;2181-BIOL-495-28;2181-BIOL-301-27;2181-BIOL-295-27;2181-BIOL-495-28;2181-BIOL-298-27;2181-BIOL-427-01;2181-BIOL-427-01;2181-BIOL-798-28;2185-BIOL-301-27;2185-BIOL-335-01;2185-BIOL-335-01;2185-BIOL-798-28;2185-BIOL-298-27;2185-BIOL-495-28;2191-BIOL-427-01;2191-BIOL-427-01;2191-BIOL-427-01;2191-BIOL-427-01;2191-BIOL-301-27;2191-BIOL-301-27;2191-BIOL-295-27;2191-BIOL-295-27;2191-BIOL-298-27;2191-BIOL-298-27;2191-BIOL-495-28;
Additional colleges/divisions
Scholarly Publications
Journal Paper
He, Xinyi and Victoria Hull, Julie A. Thomas, Xiaoqing Fu, Sonal Gidwani, Yogesh K. Gupta, Lindsay W. Black and Shuang-yong Xua. "Expression and purification of a single-chain Type IV restriction enzyme Eco94GmrSD and determination of its substrate preference." Scientific Reports 5. (2015): 9747. Print.
Hardies, Stephen C. and Julie A. Thomas, Lindsay Black, Susan T. Weintraub, Chung Y. Hwang, Byung C. Cho. "Identification of structural and morphogenesis genes of Pseudoalteromonas phage φRIO-1 and placement within the evolutionary history of Podoviridae." Virology 489. (2015): 116-127. Print.
Invited Keynote/Presentation
Thomas, Julie A. and Coll, A., Bosch, M., Adams, L., Benitez, D., Aguilera, E., Coulibaly, A., Cheng, N., Wu, W., Steven, A.C., Weintraub, S.T., Hardies, S.C. and Black, L.W. "Exploiting Mutational Surrogacy to Study Head Morphogenesis of Giant PhiKZ-related Phages." Evergreen International Phage Meeting. Evergreen State College. Olympia, Washington. 6 Aug. 2015. Conference Presentation.
First Name
Julie
Middle Name
A
Last Name
Thomas
Phone
585-475-2375
College/Division & Department
Job Title
Instructional Faculty
Professional Roles
College of Science:Instructional Faculty

Andre Hudson - aohsbi

RIT Username
aohsbi
Email
aohsbi@rit.edu
Courses Taught This Semester
2185-BIOL-495-12;2185-BIOL-798-12;2185-BIOL-498-12;2185-BIOL-301-12;2185-BIOL-298-12;2185-BIOL-499-01;2195-BIOL-499-01;2195-BIOL-499-01;2191-BIOL-798-12;2191-BIOL-798-12;2185-BIOL-500-01;2191-BIOL-498-12;2191-BIOL-498-12;2181-BIOL-500-01;2191-BIOL-495-12;2181-BIOL-798-12;2181-BIOL-498-12;2181-BIOL-499-01;2181-BIOL-495-12;2181-BIOL-340-01;2181-BIOL-340-01;2181-BIOL-295-12;2181-BIOL-298-12;2181-BIOL-301-12;2181-BIOL-295-12;2181-BIOL-298-12;2181-BIOL-301-12;2181-BIOL-340-01;2181-BIOL-340-01;2181-BIOL-495-12;2181-BIOL-499-01;2181-BIOL-498-12;2181-BIOL-798-12;2181-BIOL-500-01;2185-BIOL-500-01;2185-BIOL-499-01;2185-BIOL-298-12;2185-BIOL-301-12;2185-BIOL-498-12;2185-BIOL-798-12;2185-BIOL-495-12;2191-BIOL-499-01;2191-BIOL-499-01;2191-BIOL-340-01;2191-BIOL-340-01;2191-BIOL-340-01;2191-BIOL-340-01;2191-BIOL-495-12;2191-BIOL-301-12;2191-BIOL-401-01;2191-BIOL-401-01;2191-BIOL-401-01;2191-BIOL-401-01;2191-BIOL-295-12;2191-BIOL-295-12;2191-BIOL-298-12;2191-BIOL-298-12;2191-BIOL-301-12;
Additional colleges/divisions
Scholarly Publications
Journal Paper
Babbitt, Hudson, et al. "Synonymous Codon Organization Reduces the Impact of Mutation on Nucleic Acid Molecular Dynamics." J. Mol. Evo. (2018): N/A. Web.
AO, Parthasarathy, et al. "A Three-ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals." Front Mol Biosci. (2018): N/A. Web.
AO, Parthasarathy, et al. "Isolation and Genomic Characterization of Six Endophytic Bacteria Isolated from Saccharum sp (sugarcane): Insights into Antibiotic, Secondary Metabolite and Quorum Sensing Metabolism." Journal of Genomics 6. (2018): 117-121. Web.
AO, Parthasarathy, et al. "Whole Genome Sequencing and Annotation of Exiguobacterium sp. RIT 452, an Antibiotic Producing Strain Isolated from a Pond Located on the Campus of the Rochester Institute of Technology." Microbiol Resour Announc. (2018): N/A. Web.
Hudson, Andre O, et al. "Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution." Macromolecular Protein Complexes. (2017): 271-289. Print.
Gan, Han M, et al. "Whole Genome Sequencing of Rhodotorula mucilaginosa Isolated from the Chewing Stick (Distemonanthus benthamianus): Insights into Rhodotorula Phylogeny, Mitogenome Dynamics and Carotenoid Biosynthesis." PeerJ. (2017): 1-18. Web.
Kumar, HKS, et al. "Genomic Characterization of Eight Ensifer Strain Isolated from Pristine Caves and a Whole Genome Phylogeny of Ensifer (Sinorhizobium)." Journal of Genomics 5. (2017): 12-17. Print.
Gan, Han M, et al. "Whole Genome of Salmonella enterica subsp. enterica Serovar Typhimurium Strains TT6675 and TT9097 Employed in the Isolation and Characterization of a Novel Giant Phage Mutant Collection." Genome Announcements 5. 34 (2017): 1-2. Web.
Gan, HM, et al. "Whole Genome Sequencing and Analysis Reveal Insights Into The Genetic Structure, Diversity And Evolutionary Relatedness Of Luxi And Luxr Homologs in Bacteria Belonging the Sphingomonadaceae Family." Frontiers in Cellular and Infection Microbiology 4. 188 (2014) Web.
Gan, HY, et al. "Whole Genome Sequences of Four Oligotrophic Bacteria Isolated From Deep Within a Cave (>400 M): Lechuguilla Cave, New Mexico." Genome Announcements 2. 6 (2014): 0. Web.
Babbitt, GA, et al. "Synonymous Codon Bias and Functional Constraint on GC3-related DNA Backbone Dynamics in the Prokaryotic Nucleoid." Nucleic Acids Research 42. 17 (2914): 10915-10926. Print.
Triassi, AJ, et al. "A Putative Target for the Development of Narrow–Spectrum Antibacterial Compounds." Frontiers in Microbiology 5. (2014): 509. Web.
HY, Gan,, et al. "Whole Genome Sequences of Thirteen Endophytic Bacteria Isolated Fom Shrub Willow (Salix) Grown in Geneva, New York." Genome Announc. 2. 3 (2014): 0. Web.
MR, Oliver,, et al. "The Purification, Crystallization and Preliminary X-ray Diffraction Analysis of Two Isoforms of Meso-diaminopimelate Decarboxylase From Arabidopsis Thaliana." Acta Cryst F 70. (2014): 663-668. Print.
HM, Gan,, et al. "High Quality Whole Genome Sequences of Three Strains of Enterobacter sp. Isolated from Jamaican Dioscorea Cayenensis (Yellow Yam)." Genome Announc. 13. 2 (2014): 0. Web.
Hudson, Andre O, et al. "Differential Response of Orthologous L,L-diaminopimelate Aminotransferase (DapL) to Enzyme Inhibitory Antibiotic Lead Compounds." Bioorganic and Medicinal Chemistry. (2013): 10.1016/j.bmc.2013.10.055. Print.
Gan, HM, et al. "Comparative Genomic Analysis of Six Bacteria Belonging to the Genus Novosphingobium: Insights into Host Interactions, Marine Adaptation and Bioremediation." BMC Genomics 14. 431 (2013): doi:10.1186/1471-2164-14-431. Web.
Hudson, Andre O, et al. "Biochemical Characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl:meso-2,6-diaminopimelate ligase (MurE) from Verrucomicrobium spinosum DSM 4136T." PloS ONE 8. 6 (2013): e66458.doi:10.1371/journal.pone.0066458. Web.
Hudson, Andre, et al. "Whole Genome Sequence of Enterobacter sp. SST3, an Endophyte Isolated from Jamaica Sugarcane (Saccharum sp) Stalk Tissue." Journal of Bacteriology 194. (2012): 5981-598. Print.
Hudson, Andre, et al. "Genome Sequence of Novosphingobium sp. Strain Rr02-17, a Nopaline Crown Gall Associated Bacterium Isolated from Vitis vinifera L. Grapevine." Journal of Bacteriology 194. (2012): 5137-5138. Print.
Hudson, Andre. "Genome Sequence of Methylobacterium sp. Strain GXF4, a Xylem Associated Bacterium Isolated from Vitis Vinifera L. Grapevine." Journal of Bacteriology 194. (2012): 5157-5158. Print.
Hudson, Andre, et al. "Genomic and Biochemical Analysis of the Diaminopimelate and Lysine Biosynthesis Pathway in Verrucomicrobium Spinosum." Frontiers in Microbiology 183. 3 (2012): 3389. Print.
Hudson, A.O., I. Giron, and R. Dobson. "Crystallization and Preliminary X-ray Diffraction Analysis of L,L-diaminopimelate Aminotransferase (DapL) from Chlamydomonas Reinhardtii." Acta Cryst F67. (2011): 140-143. Print.
Hudson, A.O., et al. "Dual Diaminopimelate Biosynthesis Pathways in Bacteroides Fragilis and Clostridium." BBA proteins and proteomics 1814. (2011): 1162-1168. Print.
Hudson, A.O., I. Giron, and R. Dobson. "L,L-Diaminopimelate Aminotransferase from Chlamydomonas Reinhardtii: A Target for Algaecide Development." PLoS ONE 6. 5 (2011): 1-12. Web.
Bulman, Z., et al. "A Novel Property of Propolis (bee glue): Anti-pathogenic activity by Inhibition of N-acyl-homoserine Lactone Mediated Signaling in Bacteria." Journal of Ethanopharmacology 138. (2011): 788-797. Print.
Book Chapter
Hudson, Andre O, et al. "Lysine Synthesis in Microorganisms." The Handbook of Microbial Metabolism of Amino Acids. Edinburgh, UK: CAB International, 2017. 49-69. Print.
Hudson, A.O. and M.A. Savka. "Bioluminescence Biosensor Strains for Detection of Quorum Sensing N-acyl-homoserine Lactone Signal Molecules." Bioluminescence. U.S.A.: Nova Publishers, 2011. 747-3. Print.
Invited Keynote/Presentation
Hudson, Andre O. "L,L-diaminopimelate aminotransferase (DapL): A Novel Enzyme Involved in Peptidoglycan Biosynthesis." The Great Wall Symposium. Pasteur Institute. Paris, France. 23-25 Sep. 2013. Conference Presentation.
Hudson, Andre O. "Structure-activity Relationships Among the Mur ligase Family." The Great Wall Symposium. Pasteur Institute. Paris, France. 23-25 Sep. 2013. Conference Presentation.
Gan, H.M., et al. "Predictable Ecological Niches of Origin Revealed by Comparative Genomics of Six Novosphingobium Species." American Society for Microbiology. ASM. Denver, CO. 18-21 May 2013. Conference Presentation.
Hudson, Andre O. "Targeting the Essential Amino Acid Biosynthesis Pathways for the Discovery of Novel Antibiotics." East Carolina State University. Greenville, NC. 2 Oct. 2013. Lecture.
Hudson, Andre O. "L,L-diaminopimelate aminotransferase (DapL): A Novel Enzyme Involved in Peptidoglycan Biosynthesis." The Great Wall Symposium. Pasteur Institute. Paris, France. 23 Sep. 2013. Address.
Published Conference Proceedings
Hudson, Andre, et al. "Genomic and Biochemical Analysis of the Diaminopimelate/Lysine Synthesis Pathway in Verrucomicrobium Spinosum." Proceedings of the American Society for Microbiology. Ed. American Society for Microbiology. San Francisco, CA: American Society for Microbiology, 2012. Print.
First Name
Andre
Middle Name
O
Last Name
Hudson
Phone
585-475-4259
Rank
College/Division & Department
Job Title
Department Head
Professional Roles
College of Science:Department Head

Leslie Kate Wright - lkwsbi

RIT Username
lkwsbi
Email
lkwsbi@rit.edu
Courses Taught This Semester
2195-BIOL-308-02;2185-BIOL-495-26;2185-BIOL-798-26;2185-BIOL-498-26;2185-BIOL-301-26;2195-BIOL-308-02;2195-BIOL-308-01;2185-BIOL-308-01;2185-BIOL-298-26;2195-BIOL-308-01;2191-BIOL-798-26;2191-BIOL-798-26;2191-BIOL-498-26;2185-BIOL-308-02;2181-BIOL-498-26;2181-BIOL-495-26;2181-BIOL-301-26;2181-BIOL-298-26;2181-BIOL-295-26;2181-BIOL-201-03;2181-BIOL-798-26;2181-BIOL-599-04;2181-BIOL-201-02;2181-BIOL-798-26;2181-BIOL-599-04;2181-BIOL-201-02;2181-BIOL-201-03;2181-BIOL-295-26;2181-BIOL-298-26;2181-BIOL-301-26;2181-BIOL-495-26;2181-BIOL-498-26;2185-BIOL-308-02;2185-BIOL-298-26;2185-BIOL-308-01;2185-BIOL-301-26;2185-BIOL-498-26;2185-BIOL-798-26;2185-BIOL-495-26;2191-BIOL-201-03;2191-BIOL-201-03;2191-BIOL-201-02;2191-BIOL-201-02;2191-BIOL-599-04;2191-BIOL-599-04;2191-BIOL-295-26;2191-BIOL-295-26;2191-BIOL-298-26;2191-BIOL-298-26;2191-BIOL-301-26;2191-BIOL-301-26;2191-BIOL-495-26;2191-BIOL-495-26;2191-BIOL-498-26;
Additional colleges/divisions
Scholarly Publications
Journal Paper
Wright, L. Kate, et al. "Arrows in Biology: Lack of Clarity and Consistency Points to Confusion for Learners." CBE Life Sciences Education Vol 17. 1 (2018): 1-13. Print.
Newman, Dina L., et al. "Physical Models can Provide Superior Learning Opportunities Beyond the Benefits of Active Engagements." Biochemistry and Molecular Biology Education 46. 5 (2018): 435-44. Print.
Wright, L. Kate, Christina M. Catavero, and Dina L. Newman. "The DNA Triangle and Its Application to Learning Meiosis." CBE Life Sciences Education 16. 3 (2017): 1-14. Print.
Newman, Dina L. and L. Kate Wright. "Meiosis: A Play in Three Acts, Starring DNA Sequence." CourseSource 4. (2017): 1-9. Print.
Wright, L. Kate, et al. "Arrows in Biology: Lack of Clarity and Consistency Points to Confusion for Learners." CBE Life Sciences Education. (2017): 1-13. Print.
Golshadi, Masoud, et al. "High Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays." Small 12. 22 (2016): 3014-3020. Print.
Newman, Dina L., et al. "Development of the Central Dogma Concept Inventory (CDC) Assessment Tool." CBE Life Sciences Education 15. (2016): 1-14. Print.
Wright, L. Kate, et al. "Web-based Interactive Video Vignettes Create a Personalized Active Learning Classroom for Introducing Big Ideas in Introductory Biology." Bioscene 42. 2 (2016): 32-43. Web.
Wright, Leslie Kate. "Building a Model of Tumorigenesis: A small group activity for a cancer biology/cell biology course." CourseSource 2. (2015): 1-6. Print.
Wright, L. Kate, J. Nick Fisk, and Dina L Newman. "DNA → RNA: What Do Students Think the Arrow Means?" CBE-Life Sciences Education 13. 2 (2014): 338-348. Print.
Wright, L. Kate, et al. "Online Reading Informs Classroom Instruction and Promotes Collaborative Learning." Journal of College Science Teaching 43. 2 (2013): 44-53. Print.
Wright, L. Kate, et al. "Dual Orientation of the Outer Membrane Lipoprotein P6." Journal of Bacteriology 195. 14 (2013): 3252-9. Print.
Wright, L. Kate and Dina L. Newman. "A PCR-Based Laboratory Exercise That Increases Student Understanding of Central Dogma Concepts." Journal of Biology and Microbiology Education. 14. 1 (2013): 93-100. Print.
Wright, L. Kate, Christina Catavero, and Dina L. Newman. "Students Fail to Transfer Knowledge of Chromosome Structure to Topics Pertaining to Cell Division." CBE Life Sciences Education 11. 4 (2012): 425-436. Print.
Wright, Leslie Kate, et al. "Dimethyl Sulfoxide Exposure Modulates HL-60 Cell Rolling Interactions." Bioscience Reports 32. (2012): 375-82. Print.
Wright, L. Kate and Dina L. Newman. "An Interactive Modeling Lesson Increases Student Understanding of Ploidy During Meiosis." Biochemistry and Molecular Biology Education 39. 5 (2011): 344-51. Print.
Peer Reviewed/Juried Poster Presentation
Wright, L. Kate and Dina L. Newman. "High School Teacher Conceptions and Lessons about Meiosis Reveal a Critical gap in Molecular level Knowledge." Proceedings of the Society for the Advancement of Biology Education Research, 8th annual meeting. Ed. Mary Pat Wenderworth. Minneapolis, MN: n.p..
Newman, Dina L., L. Kate Wright, and Jean A. Cardinale. "An Interactive Video Vignette Successfully Teaches Pedigree Analysis to Undergraduates." Proceedings of the American Society of Human Genetics. Ed. American Society of Human Genetics. Orlanda, FL: American Society of Human Genetics.
Stefkovich, Meghan, et al. "3-D Physical Model-based Activities Benefit Student Learning in Multiple Ways." Proceedings of the 7th Annual Meeting of the Society for the Advancement of Biology Education Research (SABER). Ed. SABER. Minneapolis, MN: SABER.
Wright, L. Kate and Dina L. Newman. "Exploration of the DNA Triangle and its Application to Learning Molecular Biology." Proceedings of the 7th Annual Meeting of the Society for the Advancement of Biology Education Research (SABER). Ed. SABER. Minneapolis, MN: SABER.
Newman, Dina L. and L. Kate Wright. "Supporting Inclusivity and Improving Learning with Activities that Incorporate Physical Models of Molecular Biology Processes." Proceedings of the Gordon Research Conference on Undergraduate Biology Education Research. Ed. Susan Elrod. Easton, MA: Gordon Research Conference.
Cardinale, Jean, Dina L. Newman, and Kate L. Wright. "Interactive Video Vignettes: Out-of-class Primers that Allow Personalized Active Learning for all Students." Proceedings of the Gordon Research Conference on Undergraduate Biology Education Research. Ed. Susan Elrod. Easton, MA: Gordon Research Conference.
Invited Keynote/Presentation
Wright, L. Kate and Dina L. Newman. "Interactive Video Vignettes: Out-of-Class Priming Tools to Improve Student Learning of Biology Core Concepts." 24th Annual American Society for Microbiology Conference for Undergraduate Educators. 24th Annual American Society for Microbiology Conference for Undergraduate Educators. Denver, CO. 28 Jul. 2017. Conference Presentation.
Newman, Dina L. and L. Kate Wright. "Lack of Grounding in Molecular Understanding is a Barrier to Conceptual Understanding of Genetic Terminology." 7th Annual Meeting of the Society for the Advancement of Biology Education Research. Society for the Advancement of Biology Education Research. Minneapolis, MN. 22 Jul. 2017. Conference Presentation.
Wright, L.Kate and Dina L. Newman. "Confusion Surrounding the Synthesis of Macromolecules From Building Blocks: A Crucial Gap Revealed." 4th Annual Society for Advancement of Undergraduate Education Conference. University of Minnesota - Twin Cities, MN. Minneapolis, MN. 17-20 Jul. 2014. Conference Presentation.
Wright, L. Kate, Chistina Catevaro, and Dina L. Newman. "Why Undergraduate Biology Majors Miss the Concept of Homologous Chromosomes." Society for Advancement of Undergraduate Education conference, 1st Annual Conference. Society for Advancement of Undergraduate Education (SABER). University of Minnesota East campus, Minneapolis, MN. 29-31 Jul. 2011. Conference Presentation.
Published Conference Proceedings
Wright, L. Kate, et al. "Lessons Learned from the First Year Implementation of a Two-Track Reformed Introductory Biology Course." Proceedings of the National Associations of Biology Teachers Research Symposium. Ed. Teddie Phillipson-Mower. Atlanta, GA: n.p., 2013. Web.
Published Article
Newman, D. L., L.K. Wright, and H.C. Sweet. “A structured undergraduate research program that trains and prepares students for post-graduate education and scientificcareers.” Proceedings of the International Conference of Education, Research and Innovation, 2010. 5010-5019. Print. *
First Name
Leslie Kate
Last Name
Wright
Phone
585-475-4669
College/Division & Department
Job Title
Instructional Faculty
Professional Roles
Associate Department Head
College of Science:Instructional Faculty

Admission Requirements

Freshman Admission

For all bachelor’s degree programs, a strong performance in a college preparatory program is expected. Generally, this includes 4 years of English, 3-4 years of mathematics, 2-3 years of science, and 3 years of social studies and/or history.

Specific math and science requirements and other recommendations

  • 3 years of math required; pre-calculus recommended
  • Biology and chemistry required

Transfer Admission

Transfer course recommendations without associate degree

Courses in liberal arts, sciences, math, and computing

Appropriate associate degree programs for transfer

AS degree in biotechnology or liberal arts with biology

Learn about admissions and financial aid