Sorry, you need to enable JavaScript to visit this website.
magnify
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Truly Unique
    Micro-Device Research
  • Nanocomputing
    Brain Power
  • Renewable Energy
    Impacts on Climate Change
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Stellar Students
    Advancing Lithium Ion Battery Technology

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.

Research

  • The Semiconductor Photonics and Electronics Group focuses on developing highly efficient III-V and III-Nitride semiconductors for photonic, optoelectronic, and electronic devices. High-efficiency III-V and III-Nitride semiconductor based photonic and optoelectronic devices such as lasers and light-emitting diodes (LEDs) are considered as promising candidates for next generation communication and illumination system.  The research group is...

  • Recently the Rochester Institute of Technology has demonstrated the co-integration of CMOS devices and resonant interband tunnel diodes (RITDs).  Our strategy has been to integrate the tunnel diodes following all high temperature steps, but prior to the contact metallization of the CMOS devices.  A recent paper in the Sept. 2003 issue of IEEE Transactions on Electron Devices co-written by our sister group at the Ohio State University found...

  • Our group is broadly interested in light-matter interactions from the perspective of fundamental science as well as technological applications. Currently we are focused on the interplay of electromagnetic modes of radiation, such as laser light, with nanofabricated components, such as mechanical oscillators and rotors. Our aims are the cooling of macroscopic objects into the quantum regime and to establish the limits to quantum sensing of...

  • Investigating and modelling the mechanical properties of materials is important for many applications. The most common technique used for mechanical characterization of materials is called nanoindentation. The currently available tools utilized in order to perform nanoindentation have their limitations in terms of sensitivities of force and displacement or limitations due to the hardware for a broad range of material properties. When it comes...

  • The goal of the NanoComputing Research Lab is to model, design, and implement architectures and circuits that define the next-generation of intelligent computing systems.  The emphasis is on discovering new ways to design scalable, resilient, and energy efficient computer architectures. To achieve this goal, we stratify our research into i) System-level designs ii) Architecture-level design and iii) Circuit-level designs.  Our designs are...