School of Physics and Astronomy


School of
Physics and Astronomy
Breadcrumb
- RIT/
- College of Science/
- Academics/
- Schools and Centers/
- School of Physics and Astronomy
Overview
There has never been a more exciting time to study the exciting discipline of physics, spanning the workings of the sub-atomic world to the ever-expanding universe. The BS Physics Program offers a comprehensive curriculum that provides a solid foundation in experimental, computational, and theoretical physics, emphasizing laboratory training and the development of analytical problem-solving skills. Physics majors gain strong preparation for employment in research, industry, and teaching, and for graduate study in physics and related fields. BS Physics students also find graduate placements in various professional programs such as in medical, law, and business schools.
At the graduate level, the School of Physics and Astronomy offers PhD and MS programs in Astrophysical Sciences & Technology with extensive curricula and research opportunities spanning topics in stellar, galactic, and extragalactic astrophysics, as well as the fields of general relativity, gravitational wave astronomy, and instrument/detector development. Additionally, the School offers a general Physics MS Program that spans the various sub-disciplines in the field of physics, and provides both a research and a professional option to students.
50%
Of astrophysical sciences and technology doctoral students are women
11
Average number of undergraduate co-authors on peer-reviewed publications annually (2013-2018)
4
BS/MS accelerated 5-year dual degree programs offered
Undergraduate Programs
The undergraduate program in physics offers a broad curriculum preparing students for employment in research, industry, and teaching as well as excellent preparation for graduate school. The individualized research capstone component of the program provides our students with a competitive edge when seeking entry into preferred graduate programs and the job market.
In RIT’s physics degree, you'll gain an in-depth understanding of the basic principles governing the structure and behavior of matter, the generation and transfer of energy, and the interactions of matter and energy within the world around us.
Learn More about Physics BSGraduate Programs
Our graduate programs offer advanced training in physics and astronomy and provide opportunities spanning a wide variety of research and professional areas. Students in the MS Physics program can choose between either a research (i.e., thesis) option or a “professional” option. Students in the Astrophysical Sciences & Technology programs engage with RIT’s world-class research centers offering cutting-edge opportunities in gravitational waves, new advanced sensor technologies, and multi-wavelength astrophysics.
An astrophysics degree that explores the depths of the universe through multidisciplinary research. Dive into an area that most interests you, whether it's general relativity, theoretical astrophysics, observational or instrumentation development, or another area related to astrophysics.
Learn More about Astrophysical Sciences and Technology MSAn astrophysics Ph.D. centered on phenomena beyond the Earth and on the development of the technologies that will enable the next major strides in the field.
Learn More about Astrophysical Sciences and Technology Ph.D.RIT's physics master's solidifies your understanding on the core aspects of physics in both research and technical skill as you study areas of physics that support your career interests.
Learn More about Physics MSMinors and Immersions
The astronomy immersion provides students with the opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest. The immersion offers a broad background in astronomy with courses providing a broad survey of modern astrophysics and the techniques and technologies used to investigate astronomical phenomena.
Learn More about Astronomy ImmersionThis minor provides students with an opportunity for additional study in astronomy in order to build a secondary area of expertise in support of their major or other areas of interest. It will provide students with a broad foundational background in astronomy in preparation for graduate studies in astronomy or astrophysics. The minor is interdisciplinary and offered jointly by the School of Physics and Astronomy and the Chester F. Carlson Center for Imaging Science.
Learn More about Astronomy MinorOptical science techniques are used in a variety of consumer products (digital cameras, CD players), communication technologies (optical fibers), medical imaging (infrared imaging), and the sciences (surveillance, remote sensing, astronomical systems). This minor can be an important complement to studies in electrical and microelectronic engineering, the biological sciences, physics, chemistry, mathematics, technical photography, and various majors in the field of applied science and technology.
Learn More about Optical Science MinorIn a broad sense, the aim of physics is to develop interconnected unifying threads bridging the vast number of seemingly diverse phenomena observed in the physical world around us. This immersion provides students with the opportunity for additional study in physics in order to build a secondary area of expertise in support of their major or other areas of interest.
Learn More about Physics ImmersionIn a broad sense, the aim of physics as a discipline is to develop interconnected unifying threads bridging the vast number of seemingly diverse phenomena observed in the physical world around us. The minor provided students with the opportunity for additional study in physics in order to build a secondary area of expertise in support of their major or other areas of interest.
Learn More about Physics MinorLatest News
-
March 5, 2021
RIT’s Pratik Dholabhai earns NSF CAREER Award to study materials in solid oxide fuel cells
Assistant Professor Pratik Dholabhai from RIT’s School of Physics and Astronomy received an NSF Faculty Early Career Development (CAREER) award and grant for his five-year project to conduct fundamental physics research on complex materials in solid oxide fuels cells.
-
January 27, 2021
Say Goodbye To 2020 With The Year’s Top 10 Hubble Photos
Forbes features work by Joel Kastner, professor in the Chester F. Carlson Center for Imaging Science and program faculty in the astrophysical sciences and technology graduate program, in its 10 most important Hubble photos from 2020.
-
January 20, 2021
Asteroid or alien? RIT professor breaks down Harvard professor’s claim
WROC-TV talks to Michael Richmond, professor in the School of Physics and Astronomy, about observing objects in space.
Research
RIT faculty participating in the Center for Detectors are involved in the design and development of the next generation of instruments and technologies for astrophysics. We participate in a variety of ground-based, sub-orbital, and orbital programs designed to probe from our solar system and galactic neighborhood out to the most distant regions of our universe.
Research Active Faculty:
Physics research in condensed matter and materials encompasses theory and experiment. Theorists utilize electronic structure calculations, molecular dynamics simulations, and kinetic Monte Carlo modeling to study and design oxides, metals, and alloys at various length and time scales. Experimentalists are focused on the study of metals, oxides, surfaces, and magnetic systems through x-ray scattering techniques such as coherent scattering and surface diffraction, as well as imaging techniques such as atomic force microscopy.
Research Active Faculty:
Current research areas overlapping the disciplines of Physics and Engineering include such topics as optoelectronic and photovoltaic devices, surface and materials characterization, instrumentation for fundamental physics, complex fluids, and micro-fluidics. Research programs in the School of Physics and Astronomy, for example, aim to increase photovoltaic power conversion efficiency and/or reduce materials costs and consumption through the use of nanoscale and novel materials. Activities encompass materials synthesis by vapor phase epitaxy, device fabrication, material and device modeling, as well as characterization both at the electrical and materials level, and computational design of nano-materials for energy technologies, and complex fluids-structure interaction at the micro-scale for oil recovery.
Research Active Faculty:
RIT faculty participating in the Center for Computational Relativity and Gravitation and the Laboratory for Multi-wavelength Astrophysics conduct observational and theoretical research across a wide range of topics in multi-messenger and multi-wavelength astrophysics, utilizing a combination of observations spanning the electromagnetic spectrum, data from gravitational wave detectors, and supercomputer simulations. Current areas of research include numerical relativity and relativistic magnetohydrodynamics, gravitational wave data analysis, compact object binaries, accretion disks and jets, galaxy formation and evolution, large scale structure, active galactic nuclei, observational and experimental cosmology, early and late stages of stellar evolution, protoplanetary disks, planetary nebulae, the interstellar medium, supernovae, and pulsars. RIT is a member of the Large Synoptic Survey Telescope Corporation and faculty are involved in several major collaborations including the Laser Interferometer Gravitational Wave Observatory Scientific Collaboration, the NANOGrav Pulsar Timing Array Consortium, the Laser Interferometer Space Antenna, and the Cosmic Evolution Survey.
Research Active Faculty:
Physics Education Research combines physics disciplinary knowledge with cognitive science, psychology, instructional design and social science to study fundamental and applied topics in physics education. Core areas of study at RIT include: career preparation of physics majors, communication skills for scientists, identity, diversity and inclusion in physics, student epistemic framing while problem solving, educational technology development, and graduate school admissions and retention. Physics faculty are part of a larger discipline-based education research community at RIT which includes researchers in biology, chemistry, engineering, and computing. The group is distinguished by its collaborative structure that is consciously designed to maximize interactions across the disciplines.
Research Active Faculty:
Current optics research in RIT Physics consists of a combination of theory and experiments. Theorists are focused on characterizing silicon nano-photonic networks and exploring quantum sensing and mesoscopic quantum physics. Experimentalists are currently investigating problems in integrated photonics and imaging, including the quantification of entanglement for the purposes of computing, simulation, and secure communication.
Research Active Faculty:
Physics faculty engaged in research on atomic and nanoscale structure and dynamics, at a variety of length and time scales, utilize and further develop x-ray, neutron, and laser light techniques and instrumentation. In addition to x-ray scattering/spectroscopy from surfaces and laser scattering from particulate or structured solutions performed at RIT, x-ray experiments are performed at national synchrotron facilities and neutron experiments take place using instruments at national spallation and reactor sources. RIT physics faculty are also developing a new spin-polarized neutron scattering technique and instrument in which the spin polarizations of sample target nuclei are selectively manipulated using nuclear magnetic resonance techniques.
Research Active Faculty:
Biological physics researchers at RIT are studying molecular interactions related to cataract disease and to the eye vitreous, using scattering techniques, nuclear magnetic resonance, confocal microrheology and statistical thermodynamics modeling. Theorists are studying the roles of connectivity, structural and functional heterogeneities, and proximity to phase transitions in determining the robustness and adaptability of biological networks in cells and tissues, as well as networks of neurons. Such work can lead to design principles for bio-inspired, engineered systems. Soft matter researchers focus on understanding the physics of systems of many interacting bodies. Areas of research include using micro-fluidics and fluorescent optical imaging to study the complex fluids confined in solid phases where interactions are mediated by hydrodynamics, and using light and other scattering methods to study micellar and micro-emulsion systems. RIT physicists also study granular materials, collections of larger particles (sand, sugar, and coins) that interact primarily through contact forces.
Research Active Faculty:
Research Affiliates
Manasse Mbonye (RIT-Rwanda)
Eleanor Sayre (RIT-CASTLE)
Visiting Scholars
Fred Moolekamp
Featured Work
RZ Piscium
Kristina Punzi ’18 (astrophysical sciences and technology)
Kristina Punzi ’18 (astrophysical sciences and technology) led an X-ray and optical study of the young star RZ Piscium, which suggests that its unusual brightness variations may be due to the orbiting...
Direct determination of one-dimensional interphase structures using normalized crystal truncation rod analysis
Christian Cammarota ’17 (physics)
Christian Cammarota ’17 (physics) published work under the guidance of Professor Michael Pierce on the direct determination of one-dimensional interphase structures using normalized crystal truncation...
Effects of Photon Scattering Torque
Wyatt Wetzel ’18 (physics)
Wyatt Wetzel ’18 (physics) published work under the guidance of Professor Mishkat Bhattacharya on the effects of photon scattering torque in off-axis levitated torsional cavity optomechanics. https:/...