School of Mathematical Sciences


School of
Mathematical Sciences
Breadcrumb
- RIT/
- College of Science/
- Academics/
- Schools and Centers/
- School of Mathematical Sciences
Overview
The School of Mathematical Sciences is recognized for its contributions to research and applications of mathematical and statistical science, and it’s also known for expertise in mathematical and computational modeling, data science, and scientific inference. Since mathematics is at the root of many social, technical, medical, and environmental issues faced by society today, we equip our graduates with a deep understanding of mathematical and statistical principles, tools to apply those skills to real-world problems, and the ability to express complex ideas in everyday language. We provide our students with research and experiential learning opportunities and nurture curiosity and creativity.
1st
Mathematical modeling Ph.D. program in the nation
3:1
Student-to-faculty ratio
2
NSF Funded Research Experiences for Undergraduates (REU) Programs
Latest News
-
February 22, 2021
RIT retools its wastewater testing approach for the spring semester
RIT is continuing to refine the way it monitors wastewater to assess the prevalence of coronavirus on campus.
-
December 8, 2020
Dell Technologies and TACC Fuel Great Innovations
CIO Magazine mentions Manuela Campanelli, professor in the School of Mathematical Sciences, and her work with the TACC Frontera supercomputer.
-
November 24, 2020
The odds of contracting COVID-19 at Thanksgiving
WHEC-TV talks to Nathan Cahill, associate professor in the School of Mathematical Sciences and director of the mathematical modeling Ph.D. program, about potential exposure to COVID-19.
Research
Current research in the unit involves developing mathematical frameworks to discern properties of a system by working backward from known effects. Application areas include medicine, engineering, finance, earth science and imaging and the focus is on investigating the impact of uncertainty in data, identification of cancer in soft tissues, estimation of material properties, identification of market volatility, and developing fast and reliable methods for large scale computational optimization.
Research Active Faculty:
Current work in the unit includes research and consulting in biostatistics, machine learning, data science, predictive analytics, signals processing, statistical education, and statistical/scientific inference with applications to biology, astrophysics, and engineering.
Research Active Faculty:
Current research in the unit involves developing improved mathematical models of physiological systems; gaining new insights into mechanisms of physiological behavior; improving techniques for diagnosing and treating diseases; and devising advanced algorithms for analyzing physiological measurements.
Research Active Faculty:
Current work in the unit involves developing graph-based models of the brain to study the impact of concussions, improving and developing new graph-based algorithms for hyper-spectral image analysis, applying the growing concepts of complex network analysis to domain-based scientific problems, and applying algebraic techniques and methods to problems in cybersecurity.
Research Active Faculty:
Current work in the unit involves applying mathematical techniques of nonlinear dynamical systems to problems in fluid dynamics, climate modeling, population modeling, cell signaling dynamics, and more; developing mathematical models of thin film and interfacial flows with application to biological fluids, micro-fluidics devices, and industrial coating processes; gaining insights that lead to better prediction of hydrodynamic instabilities, such as turbulence, liquid fuel atomization, and liquid film breakup; devising novel computational methods to simulate fluid transport phenomena; and improving the current understanding of polymer flows and viscoelastic fluids.
Research Active Faculty:
Current work in the unit includes applications of differential geometry, numerical solutions of partial differential equations, and statistical inference to problems related to general relativity and celestial mechanics. Einstein's general theory of relativity is studied as a description of the geometry of spacetime. Advanced numerical and computational techniques are used to solve the coupled, nonlinear, system of PDEs of General Relativity and Magneto-Hydrodynamics. As part of the LIGO Scientific Collaboration, SMS faculty and researchers use statistical signal processing techniques to search for, identify and characterize gravitational-wave signals from astrophysical systems.
Research Active Faculty:
Current work in the unit involves developing new mathematical techniques to study problems of geophysical fluid dynamics, climate modeling, extreme weather, coastal and natural hazards, and other complex systems arising in the study of Earth and environmental systems.
Research Active Faculty:
RIT faculty conduct observational and theoretical research across a wide range of topics in multi-messenger and multi-wavelength astrophysics, utilizing a combination of observations spanning the electromagnetic spectrum, data from gravitational wave detectors, and supercomputer simulations. Current areas of research include numerical relativity and relativistic magnetohydrodynamics, gravitational wave data analysis, compact object binaries, accretion disks and jets, supernovae, and pulsars. RIT is a member of the Large Synoptic Survey Telescope Corporation and faculty are involved in several major collaborations including the Laser Interferometer Gravitational Wave Observatory Scientific Collaboration, the NANOGrav Pulsar Timing Array Consortium and the Laser Interferometer Space Antenna.
Research Centers:
Center for Computational Relativity and Gravitation
Research Active Faculty:
Featured Work
RIT Undergraduates Advance the Technique of Asymptotic Approximants Created by the Barlow-Weinstein Group
Nathaniel Barlow
Four undergraduate students presented their research on the analytical solution to the classical Falkner-Skan equation that describes boundary layer flow over a wedge.
3D Models of Math Equations
Nate Barlow and Steve Weinstein
Assistant Professor Nate Barlow and Professor Steve Weinstein made 3D-printed models of mathematical equations to illustrate wave systems and other fluid dynamics concepts as part of their research....
Featured Profiles
Mathematical Modeling, Curtain Coating, and Glazed Donuts
Bridget Torsey (Mathematical Modeling Ph.D.)
In her research, Bridget Torsey, a Math Modeling Ph.D. student, developed a mathematical model that can optimize curtain coating processes used to cover donuts with glaze so they taste great.
Your Partners in Success: Meet Our Faculty
Dr. Tony Wong
Mathematics is a powerful tool for answering questions. From mitigating climate risks to splitting the dinner bill, Professor Wong shows students that math is more than just a prerequisite.
Undergraduate Programs
The School of Mathematical Sciences provides a solid collegiate math education to every RIT undergraduate and offers high-level specializations such as statistical forecasting, digital encryption, and mathematical modeling. We prepare our graduates to be successful, whether they choose immediate employment upon graduation or to attend graduate school in pursuit of advanced degrees.
An applied mathematics major focusing on problems that can be mathematically analyzed and solved, including models for perfecting global positioning systems, analyzing cost-effectiveness in manufacturing processes, or improving digital encryption software.
Learn More about Applied Mathematics BSUsing statistics, probability, and computing, statisticians apply their knowledge of statistical methods—the collection, processing, and analysis of data and its interpretation—to a variety of areas, including biology, economics, engineering, medicine, public health, psychology, marketing, and sports.
Learn More about Applied Statistics and Actuarial Science BSThe computational mathematics degree emphasizes problem solving using mathematical models to identify solutions in business, science, engineering, and more.
Learn More about Computational Mathematics BSGraduate Programs
The School of Mathematical Sciences equips its graduates with a deep understanding of math principles, a toolbox for applying those skills to real-world problems, and the ability to easily express complex ideas. Our graduate programs introduce students to rigorous advanced applied mathematical and statistical methodology. Students realize the potential for that cutting-edge methodology as a general tool in the study of exciting problems in science, business, and industry.
A mathematics master's degree designed for you to create innovative computing solutions, mathematical models, and dynamic systems to solve problems in industries such as engineering, biology, and more.
Learn More about Applied and Computational Mathematics MSEngineers, analysts, and other professionals develop a deeper understanding of the statistical methods related to their fields.
Learn More about Applied Statistics Adv. Cert.In this statistics master's degree, you'll learn statistical analysis and apply it to a variety of industries, including insurance, marketing, government, health care, and more.
Learn More about Applied Statistics MSThe mathematical modeling Ph.D. enables you to develop mathematical models to investigate, analyze, predict, and solve the behaviors of a range of fields from medicine, engineering, and business to physics and science.
Learn More about Mathematical Modeling Ph.D.Minor and Immersions
Deepen your technical background and gain further appreciation for modern mathematical sciences and the use of statistics as an analytical tool.
Learn More about Applied Statistics ImmersionDeepen your technical background and gain further appreciation for modern mathematical sciences and the use of statistics as an analytical tool.
Learn More about Applied Statistics MinorNotes about this immersion:
Learn More about Mathematics ImmersionThe mathematics minor is designed for students who want to learn new skills and develop new ways of framing and solving problems. It offers students the opportunity to explore connections among mathematical ideas and to further develop mathematical ways of thinking.
Learn More about Mathematics Minor